
Gangs of the Internet: Towards Automatic
Discovery of Peer-to-Peer Communities
Liyun Li∗
LinkedIn

liyli@linkedin.com

Suhas Mathur
AT&T Security Research Center

suhas@att.com

Baris Coskun
AT&T Security Research Center

baris@att.com

Abstract—Internet Service Providers and network administrators
currently lack effective means for discovering and tracking
peer-to-peer (P2P) applications on their networks. This ability
would be very useful in various ways such as enforcing security
policies on the use of P2P applications (e.g. banning file-sharing
networks such as Bit Torrent), mitigating malicious P2P networks
(i.e. botnets), or allocating network resources appropriately to
improve network performance. To provide this ability, in this
work we propose a method to discover P2P networks (both
benign and malicious) from network flow records captured at
the boundary of a tier-1 Internet backbone provider. The basic
idea is that flows belonging to P2P applications can be modeled
as observations from a mixed membership statistical model, with
P2P applications acting as latent variables. Hence the commu-
nication patterns of hosts (who-talks-to-whom), as measured at
the edge of a large network, can be decomposed into constituent
application-layer P2P communities without any human effort in
selecting specific features. This allows for automatic identification
and isolation of P2P communities of interest, including those that
take deliberate measures to remain hidden, as well as new or
evolving ones such as P2P Botnets. In large scale experiments
on flow records from a portion of IPv4 space of size /8, we
demonstrate that the proposed method is able to detect a number
of well known P2P networks, as well as a few evolving malicious
P2P botnets.

I. INTRODUCTION

P2P networks in the Internet represent a substantial fraction
of total Internet traffic volume [1] (21-33%), [2] (30-70%),
[3] (15-20%). Yet, relatively little can be observed about
P2P networks - how they form, how they evolve, and what
techniques some of them use to remain hidden. The reason
is that, as opposed to client-server systems, tracking P2P
systems is extremely hard. More specifically, in a typical
client-server system, many client nodes communicate with few
server nodes which are located using Domain Name System
(DNS). Therefore, one can easily track a client-server system
at the network level by monitoring few servers and their
associated domain names. Whereas in P2P systems each node
can potentially communicate with any other node, leading to
a messier communication pattern and making impossible to
gain insight about the entire system by monitoring only a few
of its components.
The resource consumption that P2P systems present to Internet
service providers and the lack of measurability they come with

∗This work was done when Liyun Li was with Polytechnic Institute of
NYU and AT&T Security Research Center.

External hosts!

Internal hosts!

Network
boundary!

Fig. 1. Two weakly overlapping P2P communities: A (�) on the left and B
(�) on the right. Only edges crossing the backbone boundary (dashed line)
correspond to flows observable by us.

are at apparent loggerheads. Clearly, the growing importance
of P2P systems [2] and their resource footprint warrant better
methods for their measurement and tracking.
Apart from legitimate uses, P2P architectures have reportedly
been used by Botnets [4], [5], [6], [7], [8] due to the resilience
they provide against tracking and takedown attempts. Botnets
are networks of compromised hosts and are responsible for a
significant portion of malicious activities on the Internet today
(i.e. spam, phishing, distributed denial of service (DDoS)
attacks). These botnets use a P2P architecture to distribute
commands, patches and other updates from the botmaster to
compromised hosts (bots). Botmasters try their best to conceal
such malicious P2P activities and therefore it is important to
have better tools to discover P2P communities in the Internet
in order to mitigate such P2P botnets. In fact there are few
botnet detection techniques specifically focused on detecting
P2P botnets [9][10]. However, despite being successful in
separating out P2P botnet traffic embedded into background
network traffic, neither technique is capable of inferring mul-
tiple simultaneously operating P2P communities.
Finally, organizations such as enterprises and schools often
find it impossible to prevent the use of certain P2P applications
on the hosts connected to their internal networks. This is due
in part to the fact that a number of P2P applications take
measures to evade detection by randomizing their traffic, so
that simple signatures cannot be developed to accurately detect
their traffic. An example is Skype, which randomizes the port
number on which it operates [14]. If there were an automated
mechanism to categorically ascertain that a given network flow
crossing an enterprise network boundary belongs to a known
P2P application that must be blocked or rate-limited as per the
policy enforced by an organization’s network, then it would
go a long way in simplifying policy enforcement.

TABLE I
SUMMARY OF RELATED WORK. 1WHETHER MULTIPLE P2P COMMUNITIES CAN BE DISCOVERED SIMULTANEOUSLY (WE DO NOT CONSIDER EFFORTS

MADE ON THE ENTERPRISE NETWORK SCALE TO BE ATTEMPTING DETECTION OF MULTIPLE/OVERLAPPING COMMUNITIES). 2WHETHER MALICIOUS P2P
COMMUNITIES WERE DISCOVERED IN THE WILD. 3WHETHER OVERLAPPING P2P COMMUNITIES CAN BE DISCOVERED.

Prior work Main idea Multiple?1 Wild?2 Overlapping?3 Scale
BotGrep [9] P2P traffic mixes faster in the communication graph than centralized traffic

✗ ✗ ✗
Backbone

BotMiner [11] Clustering using hand crafted features. Not specific to P2P Botnet detection N/A
✗

N/A Enterprise

Friends of an En-
emy [12]

P2P Botnet detection in an enterprise network by partitioning of a mutual-contacts graph N/A
✗

N/A Enterprise

Statistical finger-
prints [10]

Clustering based on statistical flow features N/A
✗

N/A Enterprise

BLINC [13] Feature based low classification followed by detection of approximate, non-overlapping cliques
on communication graph. Requires access to payload data to separate out a class of P2P traffic. ✗ ✗ ✗

Backbone

Our work Treat P2P communication graph as statistical mixture model. Infer best fit community structure.
✓ ✓ ✓

Backbone

In this paper, we describe a mechanism to detect and separate
out individual P2P application communities of hosts in the
Internet using only flow-level observations made at the peering
points of a tier-1 backbone network. Our approach is based on
approximate posterior inference on a probabilistic generative
model that models P2P activity observed at the edge routers.
While the proposed inference method is similar to existing
Bayesian-inference based community detection methods, to
the best of our knowledge, our work is the first to automatically
decompose network flow records into constituent P2P commu-
nities, and to automatically detect malicious P2P communities
in the wild. Our contributions in this paper are as follows:

1) We formulate the P2P community detection problem as
a probabilistic model for partitioning Internet hosts into
(potentially overlapping) P2P application communities
using only “who-talks-to-whom” information.

2) We demonstrate that our method discovers real malicous
P2P communities in the wild.

3) We validate our approach by identifying a number
of well-known P2P communities (BitTorrent, Gnutella,
etc.) in real-world data captured at the peering boundary
of a tier-1 ISP.

4) We quantify the ability of our approach to infer P2P
application communities using a combination of real-
world network-flow data and synthetically embedded
P2P communities.

In Section II we discuss related work, in Section III we
describe the real-world dataset that is the starting point of
our analysis, and our statistical model for inferring P2P
communities. Then, in Section IV, we validate our approach
on our dataset by attempting to discover well known P2P
networks. We also describe our experience in discovering and
tracking three communities of hosts that appear to be P2P
botnets. In Section V we formally evaluate the performance
of our approach against perfectly known ground-truth by
synthetically creating P2P communities with various types of
random topologies, embedding them into a real network flow
dataset and attempting to discover them. Finally, we close with
a discussion of limitations of our approach in Section VI and
conclude the paper in Section VII.

II. RELATED WORK

Research efforts that are most closely related to our work
are summarized in Table I. These have to do with detecting

communities of P2P hosts and P2P Botnets. As summarized in
Table I, we are the first to be able to decompose network traffic
into multiple constituent P2P communities, at the scale of an
Internet backbone, and the first to report on the detection of
malicious communities in the wild. There have also been other
efforts to detect botnets in enterprise networks [15], [16], [17],
[18]. All these methods focus on detecting centralized botnets,
other than [17] which can be used to detect P2P botnets as
it focuses on initial infections and is agnostic to the C&C
architecture. [19] aims at P2P botnet detection, using dynamic
analysis of malware binaries and active network probing.
Notice that all these methods focus on detecting individual
bots in enterprise networks, while our goal is to get a holistic
picture about all P2P communities at the backbone level.
The approach we take to inferring P2P communities is one of
several community detection methods described in literature.
Detecting communities in complex graphs has been studied in
various other contexts such as social networks, web graphs and
biological protein-interaction networks (see [20] for a survey).
Bayesian methods are especially attractive for detection of
overlapping communities because they infer the probability
that an entity belongs to a given community, and also provide
a way to assign a confidence score to whether an inferred
collection of hosts is really a meaningful community.
The ability to assign a confidence score of inference-based
methods is especially useful in our context when monitoring
the development of new communities, or malicious communi-
ties. That is, if we are very confident that a certain new inferred
community is really a valid clustering of hosts, and some
fraction of it appears to be malicious (say, via a blacklist), then
we can be very confident about the implied maliciousness of
other hosts in the community.

III. DETECTION ALGORITHM

In this section, we describe our approach to infer potentially
overlapping clusters from datasets of <source-IP, destination-
IP> pairs (i.e. who-talks-to-whom). The reason why we only
use who-talks-to-whom information is two-fold. First we do
not focus on any specific P2P application, therefore we avoid
employing any application specific signatures, such as specific
port numbers, network topology, payload etc. Second, although
it has been shown that clustering analysis based on certain
network flow features helps identify members of some P2P

TABLE II
DESCRIPTION OF 1 HOUR OF FLOW DATA FROM A /8 NETWORK (224

POTENTIAL INTERNAL IPS) AFTER FILTERING OUT NON-P2P FLOWS AND
DEGREE-FILTERING.

of Internal hosts 148,902
of External hosts 1,946,879

of Flows 47,908,665
of edges 8,302,666 2 10 50 100

0.0001

0.01

1

Degree distribution

communities [10], in principle members of a P2P commu-
nity (especially a botnet) can slightly perturb their flows
to randomize flow features [21], thereby evading clustering
analyses. Unlike flow features, however, who-talks-to-whom
information is the very essence of a P2P community since
peers must communicate with each other to form a functioning
P2P network.
Before we explain the further details of our method, we first
present our measurement setup and our dataset.

A. Dataset
Measurement Setup. We make measurements at the peering
routers of a large tier-1 US backbone provider. The boundary
of this network (depicted as a dashed line in Figure 1)
consisting of routers that peer to other ISPs, divides internet-
connected hosts into internal and external hosts. Our setup
allows us to record any network flow that crosses a peering
router, irrespective of the direction of the flow. These network
flow records comprise source and destination IP addresses,
port numbers, protocol, duration, the number of packets and
the number of bytes, However, as discussed before, we do not
use any of these quantities other than IP addresses (i.e. who-
talks-to-whom) in inferring P2P communities. We only make
use of these flow features in validating some of the inferred
communities (Section V).
Notice that, we are not able to capture network flows that
have both end-points either completely inside the network, or
completely outside the network. In other words, the observed
communication graph is bi-partite. Also notice that, we use
the term P2P community to refer to a collection of hosts
that participate in a common P2P application (e.g. Skype)
within a given time interval (e.g. 1 hour). With this definition,
each community belongs to a specific application, but all
users participating in that application may not necessarily
be grouped into a single community (e.g. there may be 3
disjoint Skype communities). Finally, each host can participate
in more than one P2P application (e.g. a host using Skype and
BitTorrent within one hour).
Filtering out Non-P2P flows: Our method requires a set of
P2P flows (Source IP, Dest IP pairs) as input. To remove non-
P2P flows from our dataset, we employ a local database of
DNS records. This database keeps track of the IP address
that each domain name resolved to, for all DNS requests and
responses that cross the backbone boundary within the most
recent 1-day period. We label a flow as P2P only when both
its source IP and destination IP are not associated with any
domain name in this database. The intuition behind this is
that, in the client-server model, servers are usually addressed
by their domain names, whereas in P2P networks, peers find

Fig. 2. The probabilistic generative process used to explain the dataset of
(source-IP, destination-IP) pairs. The numbers in parenthesis correspond to
the numbering in Figure 3 and the steps described in Section III.

each other using their IP addresses directly. A similar DNS-
based filtering approach is used in [10]. Notice that, being
assigned a domain name is not sufficient for an IP address
to be on this database. The database only contains domain
name/IP address pairs which have been actually queried on the
DNS infrastructure. Therefore, client hosts which are assigned
domain names by their ISPs or institutions (e.g. dynamic DNS)
are not included in this dataset with high probability since
their domain names are rarely queried. Therefore such hosts
still appear in our P2P analysis if they are engaged in any P2P
communication.
Degree Filtering: After remove non-P2P flows, we treat the
remaining flows as a graph in which vertices are IPs and edges
indicate communication between them. We observe that, the
degree of nodes in this graph is highly diverse: 1) there are
high degree nodes which almost talk to every other node; 2)
there are pair of nodes which only talk to each other only
and no other node. For our algorithm, flows of these two
kinds of nodes provide very little information in inference.
In the former case, high degree nodes are associated with
many communities and therefore do not provide distinguishing
information between different communities. In the latter case,
on the other hand, isolated pairs of nodes do not provide
information to link other nodes together in a community since
each one has connection only to one another. We therefore
filter such flows out., The remaining flows are fed as input into
the community detection algorithm. Table II shows a summary
of this dataset.

B. P2P community discovery via Latent Dirichlet Allocation
There are several challenges involved in partitioning hosts into
(potentially overlapping) P2P communities.
Limited visibility. First, it is not possible to observe network
flows between hosts on the same side of the network boundary.
Overlap. Second, a given host can participate in more than
one P2P application, therefore it is important to allow for
overlapping communities.
IP churn. Finally, we can only identify hosts via their IP
addresses, which can change with time, and therefore, we must
work with a dataset that is short enough in duration to avoid
dynamically changing IP addresses from becoming a major
problem.
To address these challenges, we employe an unsupervised
learning approach based on a probabilistic generative model

called Latent Dirichlet Allocation (LDA) [22]. LDA is a
probabilistic clustering model that has been successfully used
in the natural language processing community for the task of
modeling topics in text corpora. The goal in topic modeling is
to discover a latent structure in a collection of text documents
in terms of hidden ’topics’, i.e. collections of terms that tend
to co-occur. Our problem of decomposing network flows into
constituent P2P communities is of a similar flavor: Just as
words that co-occur often in documents probably belong to the
same topic, hosts that share many of the hosts communicating
with them, are likely to belong to a common P2P community.
The membership of hosts in the P2P communities are the latent
variable we wish to infer.
If we were to treat each host as a node in a graph and place an
edge between two entities if they are found to communicate,
then densely connected regions (nodes and edges) of the graph
are likely to belong to the same P2P application. This is be-
cause there are likely to be many more links between members
of a single P2P application community in the communication
graph, than between the two different application communities.
Imagine that each network flow between an internal host
and an external host was produced by an imaginary two-
step process (see Figure 2): each internal host first picks,
at random, a P2P application community to participate in,
out of K possible communities, and then, given the chosen
community, an external host that belongs to that community
is picked, also at random. This two step process is repeated for
each flow in the observed dataset, with the random draws made
independent of other draws. Each of the two random draws are
made according to specific (as yet unknown) distributions –
the first, a distribution over communities, and the second, over
external hosts, given a community. These distributions can be
treated as tunable parameters of a model. Using Bayes’ rule
to answer the question: ”What setting of the parameters best
explains the observed communication patterns?” gives us the
distributions, from which we can infer a grouping of hosts into
communities. Since each community is simply a probability
distribution over external hosts, the same host can appear in
more than one community. The same is true for internal hosts.
In the remainder of this section we describe the LDA model
in detail, as applied to our problem.
The LDA model in detail. Consider a data set D, consisting
of {source IP, Destination IP} pairs in a given time interval. If
we think of D as a graph G where vertices represent hosts, and
undirected edges represent flows between pairs of hosts, then
G must be a bipartite graph because of our measurement setup
(Section III-A). Each IP in D can be a member of one or more
P2P communities. We assume there are K P2P communities
in all. We first define two families of multinomial distributions
(see Table III for summary of notations):

θ: For each internal IP i, consider a K-dimensional
multinomial probability distribution θi, where i =
1, . . . , Nint, and Nint is the number of internal IP
addresses in D. The n

th element of θi represents the
extent to which internal IP i belongs to the n

th P2P

TABLE III
SUMMARY OF NOTATION

Symbol Meaning
D Dataset of {Source IP, Dest IP} pairs
Di Set of all flows involving internal host i

Nint Number of internal IPs
Next Number of external IPs

K Approximate number of P2P communities
θi Multinomial of dimension K

βj Multinomial of dimension Next

Ci,n Community of the n
th flow of internal host i

Hi,n External IP involved in i
th internal host’s n

th flow
α Dirichlet hyperparameter for producing prior θis
η Dirichlet hyperparameter for producing prior βjs
γ Fraction of hosts that are internal

community.
β: For each community Cj , j = 1, . . . ,K, consider a

multinomial probability distribution βj , j = 1 . . .K over
all the external IPs in D. The dimensionality of each βj

is Next, the number of external IP addresses. The m
th

element of βj represents the extent to which the m
th

external IP participates in the j
th P2P community.

We first collect all the flows in D involving internal IP i

into a dataset Di. Let |Di| denote the number of flows in
Di. We ignore the order in which these flows occur. The
behavior of each internal host i in D can be described via
a probabilistic generative process as follows (see Figure 2 for
an illustration of the generative process and Figure 3 for the
probabilistic graphical model that represents the generative
process described in the steps below. The numbers within
parantheses in Figures 2 and 3 correspond to the numbering
of the 3 steps below):

1) A Dirichlet distribution (a distribution over distributions)
is sampled to randomly pick a multinomial for each of
the θi and βj distributions. In Figure 3, α and η are
parameters of the two separate Dirichlet distributions.
We use α = 0.3 and η = 0.01 based on suggestions in
[23], [24].

2) For each flow in Di, first randomly pick one of the K

communities, by sampling the multinomial θi. Let the
chosen community be denoted by Ci,n.

3) Then given Ci,n = k was picked, (k ∈ {1, . . . ,K}),
pick an external IP by sampling from βk. Let the external
IP picked be denoted by Hi,n.

The last two steps above are repeated for each of the |Di| flows
in Di, and the set of three steps above is repeated for each
internal host in D. Given prior distributions θi, i = 1, . . . , Nint

and βj , j = 1, . . . ,K, and this probabilistic generative process
(i.e., how observed data D is linked to a given set of prior
distributions θi and βj), our objective is to infer posteriors
θi,βj |D. Exact computation of the posteriors on θi and βj

is intractable. Standard techniques are available to perform
approximate posterior inference on probabilistic graphical
models (e.g. Belief propagation, Markov Chain Monte Carlo
algorithms such as Gibbs sampling, Variational Methods, etc.).
We select collapsed Gibbs sampling [24] as our approximate
inference algorithm as it can be paralleled over a compute
cluster [23]. The Gibbs sampling algorithm provides us with

Fig. 3. Probabilistic graphical model for LDA (shaded nodes are observed)

a matrix of size Next×K in which the (i, j)th element is the
estimate of the number of flows that external host i has been
involved in while participating in community j. The columns
of this matrices can be normalized to sum up to 1 to yield the
posterior distributions βi, i = 1, . . . ,K. Since internal hosts
are connected to external hosts by flows, and we have assigned
external hosts to communities, we can now infer a second
matrix of size Nint ×K containing the estimated number of
flows for each internal host in each community. The rows of
this matrix can be normalized to sum up to 1, to yield the
posterior distributions θi, i = 1, . . . , Nint.
Cluster the hosts using the LDA model output.
In each of the two matrices above, the (i, j)th element is an
estimate of the number of flows of host i’s flows in community
j. We assign host i to community j if the (i, j)th element of
this matrix is greater than a certain threshold. In practice, we
found that threshold = #of flows in dataset

#of hosts in dataset , i.e., average number
of flows per host, provides satisfactory performance in terms
of both precision and recall (in Section V we provide precise
definitions and evaluate the precision and recall of detecting
a P2P community). If no element in the i

th row of the matrix
is greater than this threshold, and there is a single non-
zero element in the row at the l

th position, then we assign
host i to community l. Otherwise we do not assign host i

to any community. However this is a rare case because it
corresponds to a host with few very flows going to more than
one community.

IV. DETECTING REAL P2P COMMUNITIES IN THE WILD

In this section we validate our algorithm on real-world
network-flow data (see Section III-A) by checking whether
the communities inferred by us correspond to meaningful P2P
communities and whether they are malicious. Notice that the
real-world data captured in the wild is inherently free of any
labels. And in the absence of any labeled data, validating our
method is a tricky problem since it is impossible to compute
traditional metrics, such as false positive rate, detection rate
etc. Nevertheless, to demonstrate that our algorithm infers
valid P2P communities, we employ three basic strategies: i)
We track the members of inferred communities using a public
blacklist over a period of time. The intuition is that if a
significant fraction of the members of a community appears
on a blacklist, then that community is highly likely to be
a real malicious P2P community. ii) We check whether a
specific port number is mostly used when the members of
an inferred community communicate with each other. This
would verify that our method is able to successfully identify
some well-known P2P communities employing a standard port
number (e.g. BitTorrent). Notice that, while such well-known
communities can easily be identified using a simple port

50 100 150 200 250 30015,000

20,000

25,000

30,000

35,000

Number of Communities

Pe
rp

le
xi

ty

Fig. 4. Perplexity curve for using
different number of communities.

Fig. 5. CDF of the number of hosts in a
cluster.

analysis, being able to identify these communities indicates
that other inferred communities by our method, which don’t
employ a standard port number, are also likely to be real
P2P communities. iii) Finally we check how several flow-level
features vary among the members of an inferred community.
The idea is that, if the inferred community is indeed a real
community, then the members of that community should
exhibit some similarity on some flow-level features. Before
presenting our results, we first address how we set an important
algorithm parameter below:
Choosing the number of communities (K): Recall that one
important parameter of our inference algorithm is the number
of communities (K). If K is chosen too small, only strong
communities will show up and weak communities are ignored
by the detection algorithm. On the other hand, specifying too
many communities will split true communities into pieces
randomly. To estimate K using our dataset itself, we employ
the notion of perplexity [22]. Roughly speaking, perplexity
is the negative log likelihood of new, unseen data, given
a model developed using seen data (Formally, perplexity=
exp

�
− log (p(TestData|Model(K)))

#of external hosts

�
). We split up the dataset by

flows, into a training portion and a test portion. Given a
model trained on the training set, perplexity measures how
surprising it is to observe the test data. If we split the dataset
randomly several times, then a model (parametrized by K) that
consistently gives lower perplexity on many different splits
than other models is a better fit to the data.
To choose an appropriate K, we compute perplexity using the
10-fold cross validation on 10 minutes of our dataset under
different K values. The perplexity curve is shown in Figure 4,
which shows that the perplexity value drops quickly as the
number of communities is increased at the beginning. The
minimum is attained around K ∼ 165, and then it starts to
increase which ostensibly indicates overfitting. Therefore, we
choose the number of communities to be K = 165. Note that
K = 165 is not the exact true number of communities, but
rather an approximation. Running our algorithm on our dataset
with K = 165 produces communities with sizes shown in
Figure 5.

A. Validating malicious communities using blacklist

To confirm whether inferred communities are indeed real
malicious P2P communities, we checked the IP addresses of
the members of each community against the Spamhaus black-
list [25]. We found that three communities—with 1867, 2908,
and 2273 hosts respectively—had significantly high fractions
of host members blacklisted (see Figure 6(a)). Each of these
three communities had roughly 10% of their host members

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

Discovered Communities

B
la

c
k
li
s
ti

n
g

 R
a
te

Cumulative Rate
at Day 50
(End of Tracking)
Blacklisting Rate
at Day 02273

Hosts
1867
Hosts

4908 Hosts

(a)

0 1 2 3 4 5 6 7 14 21 28 35 42 49

0.1

0.2

0.3

0.4

Days

C
um

ul
at

iv
e

R
at

es
 fo

r
B

ei
ng

 B
la

ck
lis

te
d

Suspicious Community 1
Ramdom Community
Suspicious Community 2
Random Community
Suspicious Community 3
Random Community

Suspicious Malicious
Communities

Dummy Communities

(b)

Fig. 6. (a) Fraction of hosts in each discovered community, that are present in Spamhaus’ blacklist on the day that communities are initially discovered
and on day 50. (b) Growth in the fraction of hosts that are ever blacklisted during a 50 day period, for the 3 suspicious communities in (a), compared with 3
random communities of the same sizes as the suspicious communities. The blacklist is checked every 8 hours. There was a 7-day gap in data collection due
to a outage on the server running our script.

blacklisted at the time we inferred communities (Figure 6(a)).
10% is a statistically significant fraction, considering that a
random set of IP addresses of the same size from our dataset is
likely to have a very small fraction of IP addresses blacklisted.
Therefore, we conjectured that these communities were P2P
botnets. Notice in in Figure 6(a) that, a small fraction members
of almost all K = 165 communities are also blacklisted. This
is explained by the fact that our model allows for some overlap
between communities—therefore blacklisted hosts that appear
in the 3 suspicious communities may also be part of other
non-malicious P2P communities. A second reason for this is
that as any machine learning algorithm, LDA, followed by our
thresholding process, does not perfectly classify every host
into its member communities because of lack of sufficient
evidence (data).
Next, to improve our confidence that these three communities
are malicious, we tracked their members over time, by repeat-
edly checking against the SpamHaus for a period of 50 days.
Our goal was to confirm whether more of their member hosts
show up in Spamhaus’ blacklist. As a baseline for comparison,
we created 3 random communities of the same sizes as the
suspected malicious communities, and also tracked their IPs
across time, recording their cumulative blacklisted fractions.
The random communities were created by uniform random
sampling of IP addresses in our original dataset. In order to
make sure our results were statistically significant, each of the
three dummy communities was actually constructed as a set
of 10 random communities of the same size, and the results
from monitoring the Spamhaus blacklist were the average over
these 10 communities for each of the 3 dummy communities.
As shown in Figure 6(b), the cumulative ratio of blacklisted
hosts for these 3 communities show a significant increase
from 10% to > 40%, while the ratios for the 3 dummy
communities exhibits almost no increase. The cumulative
blacklisted fractions for each of the K = 165 communities
after 50 days of tracking are also shown along with the results
from day 0 in Figure 6(a). The gradual blacklisting of hosts
in our suspected malicious communities leads us to believe
that these 3 communities are with high likelihood, parts of
P2P botnets used for malicious campaigns. The observation
that the initial blacklisted fraction is not very high (10%)
but steadily grows to a high value can be explained by the
fact that a botmaster does not need to use all the bots in one

campaign simultaneously, but instead may use them in stages.
This is a significant result, with the implication that bots can
be detected simply from their communications patterns with
peer bots, ostensibly before they display malicious behavior
and certainly before they appear in present day blacklists.

B. Well-known communities with standard port numbers
In order to identify known communities that use standard
ports, we compute for each port (1 to 65535), the fraction
of hosts which use that port at least once in each inferred
community. We refer to this fraction as the popularity of the
port. In computing popularities, hosts at both ends of a flow are
considered associated with both ports (source and destination)
in a flow. Only flows for which the hosts at both ends belong to
exactly one community are used. Port popularities represent
how frequently a specific port occurs within a community.
For many P2P applications (e.g. BitTorrent), there are default
ports (6881-6889) used by client-software which most peers
have communication flows on. If the communities discovered
by us are meaningful, then we would expect such popular
ports to appear in at least some of the communities we
discover (not all P2P applications used fixed ports numbers or
ranges). Again we stress that port information is not sufficient
to address the problem of discovering P2P communities in
general. However, after detecting the communities, observing a
large popularity for a certain ports within a community serves
as a strong validator for the P2P application associated with
the community.
We check whether there is one or more ‘featuring ports’ (a
port with a sharp peak) for these communities separately for
TCP and UDP. The port popularities for 8 of our inferred
communities are shown in Figure 7. These communities all
exhibit at least one featuring port which is well-known and
associated with specific P2P application or protocol. For
example, it is highly likely that the community featuring TCP
port 6346 is Gnutella while the one featuring TCP port 6881 is
BitTorrent. See [26] for a detailed mapping of port numbers to
well-known services. We found that there are 123 communities
with identifiable featuring port for a known P2P application.
To name a few, we detected 2 Gnutella-based communities
with a total number of 9138 hosts. Also it is interesting that we
found a community featuring port 8247 (Figure 7(b)), which
is not very well-known, but in [27], the authors report that

Fig. 7. (a)-(h) Port popularities: Fraction of hosts in each of 8 communities
discovered by us, that use a given port at least once. The title of each plot
indicates the most popular port, the protocol (UDP/TCP), and our estimate
for what application it is (using [26])

port 8247 is associated with a plug-in which users download
to watch the CNN news videos smoothly using P2P links to
other CNN viewers. Hence we believe this to be a P2P video-
sharing community for watching CNN. One of the biggest P2P
applications we detected with more than 15,000 hosts, appears
to be associated with the World of Warcraft gaming service
(Fig. 7(d)). There are also several P2P VoIP communities
(which typically use port the Session Initiation protocol (TCP
port 5060) to setup a call).

C. Variance of flow features within communities
Given that members of a community run the same P2P
application, some flow level behavior among the members of
a community should be similar to each another on average,
but different from flows randomly chosen from our dataset.
For example, the flows between BitTorrent peers are likely to
use similar ports in the range 6881-6889, and also similar
(likely longer) duration and payloads. The distributions of
these flow features, will be different from other non-file-
sharing communities as well as from randomly picked flows.
Therefore, to evaluate the quality of our our inferred commu-
nities, we measure the entropy of the flow features (TCP port
distribution, UDP port distribution, packets-per-second(PPS),
bytes-per-second(BPS), and bytes-per-packet(BPP)) for flows
of each inferred community to check whether hosts in a
community have similar flows with similar features.
For each feature, entropy is computed after first quantizing the
distribution of that feature, so that entropy is that of a discrete
random variable. Since ports are already discrete (0-65535), it
is straightforward to use 65535 bins. A uniform quantization
of 20 bins is applied for the other features (PPS, BPS, BPP).
For a fair comparison, the community entropy for each flow
feature is compared with a random sample of flows, equal in
number to the number of flows in the community. We compare
the community entropies for the 5 traffic features in Figure 8.
In each plot, communities are arranged in increasing order
of their feature entropies. Most inferred communities exhibit
significantly lower entropy compared to a random set (of the
same size) of flows. For example, around 160 communities
have significantly lower BPS and BPP entropies than the
baseline benchmark, which suggests that these communities
are well clustered and represent meaningful P2P communities.

0 80 160
9

9.2

9.4

9.6

9.8

10

UPD Port

Communities Sorted
0 80 160

0

1

2

3

4

5

PPS

Communities Sorted
0 80 160

0

5

10

15

BPS

Communities Sorted
0 80 160

0

2

4

6

8

10

BPP

Communities Sorted
0 80 160

2

4

6

8

10

12

14

En
tr

op
y

in
 B

its

TCP Port

Communities Sorted

Fig. 8. Entropies of 5 flow features for each of K = 165 communities, sorted
by entropy (�) along with corresponding entropies of the flows of random sets
of hosts (�) equal in number to the size of the community being compared
with. The dotted line is the median entropy of discovered communities.

V. PERFORMANCE EVALUATION

Our goal in this section is to quantify how accurately our
system can discover a P2P community, in terms of the proper-
ties of the community. In particular, we would like to explore
what types of communities can and cannot be detected by
the system. In order to measure this in full generality, we
require labeled data specifying which P2P communities each
host is part of. For this purpose we synthetically generate
communities with various P2P topologies and connectedness
into our dataset to serve as a labelled data.
Embedding Synthetic Communities: When embedding com-
munities, all hosts in the embedded communities are chosen
from IPs that already exist in the dataset. In other words, we do
not add any new nodes but only new edges to the underlying
communication graph. This is important because simply em-
bedding an isolated community consisting of new nodes is not
appropriate for measuring the performance of our system, as
it would be trivial to detect such isolated communities. Also,
we make sure that the embedded graph is a bipartite graph, as
would be observed via our measurement setup as described in
Section III-A. That is, we embed the edges corresponding to a
synthetic community only if they cross the network boundary.
By embedding synthetic communities IP addresses already in
the dataset, we effectively make each member of a synthetic
community belong to at least one more community other
than the synthetic one. Hence, the results we present in this
section essentially serve as lower bounds on the real-world
performance of our system.
Metrics: Let C denote an embedded community and let Ĉ

denote its detected version. We take Ĉ to be the inferred com-
munity with the most common IP addresses with the embedded
community C. To evaluate accuracy we employ two metrics:
precision and recall. Precision is defined as the fraction of
the members of Ĉ that actually come from the underlying
ground-truth community C. Recall is defined as the fraction
of members in C that appear in the detected community Ĉ.
Formally, precision

C
(Ĉ) = |C∩Ĉ|

|Ĉ| ; recallC(Ĉ) = |C∩Ĉ|
|C|

Synthetic Community Structures: We measure precision and
recall of detecting synthetic P2P communities generated as
per two different random graph models: (i) the Erdos-Renyi
(ER) model [28], and (ii) the Barabasi-Albert (BA) model
[29]. In Erdos-Renyi random graphs, each vertex has an equal
probability p of having an edge to any other vertex. The
degree distribution of an Erdos-Renyi graph is Binomial. In
an ideal case where every host is equally accessible, P2P
applications exhibit an Erdos-Renyi structure. For example,

0

0.5

1

(a) Erdos−Renyi Graph

P: connection parameter for Erdos−Renyi Graph

1 8 64
0

0.5

1

(b) Barabasi−Albert Graph

1 8 64

M:connection parameter for Barabasi−Albert Graph

λ = 1

λ = 5

λ = 10

λ = 15

λ = 20

λ = 1

λ = 5

λ = 10

λ = 15

λ = 20

RecallRecall

10−410−5 10−3 10−210−5
10−4 10−3

10−2

Precision Precision

Fig. 9. Precision and recall performance on discovering Erdos-Renyi and
Barabasi-Albert structured P2P communities. The detection precision and
recall sharply increase for the Erdos-Renyi communities around the critical
value p = lnn

n , while for the Barabasi-Albert communities, the detection
ratio gradually improves with better connectivity M and increased activity λ

in the Conficker-C botnet[30], when a new peer wants to
join the botnet, it randomly generates a list of IPs from IPv4
space and tries to establish a connection with the selected
IP address. Assuming each peer has equal accessibility, the
chances that two peers get connected is the same for any
pair of peers. However in practice, not every peer has the
same level of accessibility. Some peers are behind a NAT or
firewall, which prohibit incoming connections. Hence peers
with public static IP addresses will be more reachable and
preferred. This selectivity can be captured by the Barabasi-
Albert random graph, which is based on a ‘preferential attach-
ment’ mechanism. In fact the Barabasi-Albert model is shown
to capture the dynamics of many real-world networks, such
as the World Wide Web, Protein Networks, Co-Authorship,
etc.[29]. More specifically, Barabasi-Albert model defines a
random graph generation process as follows: (i) New peers
join the P2P community one at a time by establishing M

links to the existing peers in the network. (ii) The probability
of a peer being selected by a newcomer is proportional to
its degree. Better connected peers are preferred more and
essentially become hubs of the network.
Detection Peformance: To embed a synthetic community, we
first create an ER or BA random graph, with 10,000 external
hosts and 1000 internal hosts, and remove any edges that
do not cross our network boundary. We then add artificial
flows to embed the synthetic community into our dataset.
In the BA model, The number of artificial flows per edge
in the random graph is determined by a Poisson distributed
parameter λ which captured how active a pair of hosts is. Then
we run our algorithm and check precision and recall of the
detected community. We independently repeat each experiment
5 times and the averaged results are shown in Figure 9 for
various connectivity and activity parameters (i.e. p and λ for
Erdos-Renyi model, M and λ for Barabasi-Albert model). As
expected, the detection performance monotonically improves
with increased connectivity (increasing p or M), as well as
increased activity (λ). That is, when a community is well-
connected and exhibits reasonable activity, our system can
accurately identify it. For example, at an average activity rate
of λ = 15 and p = 0.01, the precision and recall are both
better than 96%.
Effect of connectedness (p and M): An Erdos-Renyi graph is
in general disconnected for small values of p and is known to
form a single giant component with high probability when p is

1% 5% 10% 20% 40% 50% 60% 75%
0

0.25

0.5

0.75

1

Overlapping Ratio

P
re

c
is

io
n

 a
n

d
 R

e
c
a
ll

Overlapping Precision
Overlapping Recall
Synthetic Community A Precision
Synthetic Community A Recall

Two embedded
overlapping
communities are
discovered
as a single one.

Fig. 10. Performance for overlapping communities.

raised above a critical value. We observe this effect in Figure
9 as a sharp increase in precision and recall values around the
critical value of p. In contrast, Barabasi-Albert graphs have no
such critical value for connectivity (BA graphs are always a
single connected component) and the performance smoothly
improves as M increases.
Overlap between communities: In general, P2P communities
may overlap with each other since some nodes may partic-
ipate in more than one community. To test how accurately
our system can detect and distinguish between overlapping
communities, we embed two overlapping synthetic Barabasi-
Albert communities, A and B, simultaneously into real-word
dataset. Each community has 11,000 nodes (1,000 internal and
10,000 external). The amount of overlap is controlled by the
overlap ratio q, which is defined as the fraction of hosts shared
by both communities (i.e. q = #sharedHosts

11000). After creating flows
with λ = 15 and embedding into our real-world data, we feed
the mixed dataset to our algorithm. We are interested in how
accurately our model detects embedded communities, as well
as how accurately it identifies the overlapping portion (i.e.
hosts which are members of both communities). The precision
and recall results for varying q are shown in Figure 10 for both
the overlapping part and for community A. We observe that,
when the overlap ratio is smaller than 75%, the system is able
to identify the embedded communities and the overlapping
part fairly accurately. Note that, we present the results only
for community A in Figure10, since the system performs
almost equally for A and B when q < 75%. On the other
hand, when overlapping ratio is q ≥ 75%, the system detects
both communities as a single community (i.e. community A).
Since community B is no longer detected, the precision and
recall for just the overlapping part drops almost to zero for
q ≥ 75%. This provides us with a rough figure of 75% as
the overlap threshold above which communities loose their
individuality and instead get discovered as a single fused
community. However, since overlap refers to participation of
hosts in multiple P2P application communities within a time
interval small enough to avoid the effects of dynamically
changing IP addresses (1 hour in all our experiments), we
believe it would be very unlikely for communities to have an
overlap of ≥ 75%.

VI. LIMITATIONS AND FUTURE WORK

The most important limitations of our work are: (i) We must
deal with limited amounts of data at a time because IP
addresses assigned to hosts can change over time, (ii) We can
only measure flows that cross a certain network boundary, and
(iii) We require centralized communities to be filtered prior to

inference and this is not easy to achieve perfectly. Naturally,
all these limitations affect the final quality of inference.
It would be useful to extend our statistical model to include
flow features such as bits per second, packets per second,
etc. It would also be useful to incorporate the timestamps
of flows – if a host has flows to two different hosts within
a very short time interval, it is likely that the flows, and
hence the two hosts, belong to the same P2P application.
Finally, we estimated the number of communities, K, by
empirically evaluating how well the observed data fits the
model for various values of K. This may not be the best way
to address this issue. In particular, it is possible to estimate
K more directly by using the Hierarchical Dirichlet Process
[31] or non-parametric models like the Indian Buffet Process
[32]. Finally, in the future, we are interested in tracking the
evolution of suspicious communities (e.g. suspected botnets)
over time by running inference repeatedly over successive
time-windows.

VII. CONCLUSIONS

We formulated an unsupervised probabilistic inference model
to address the problem of discovering P2P application com-
munities. The proposed method can discover P2P communities
independent of their specific protocol or topology, using only
communication patterns, allowing: (i) policy enforcement re-
lated to P2P traffic in private networks such as enterprises and
schools, (ii) discovery of new/evolving malicious P2P botnets,
and (iii) network service providers a means to monitor P2P
traffic as separate communities at the application level. We
evaluated and validated our method in a number of ways. Our
results indicate that the inferred groupings of hosts into com-
munities is meaningful as we are able to detect well-known
communities that operate on known ports, and also because the
entropy of flow features for a community is typically much
lower than what it would be for randomly sampled flows.
We are the first to demonstrate the discovery of communities
that are very likely to be P2P botnets. We found that the IP
addresses of hosts in 3 suspicious communities discovered by
us gradually appear in public blacklists over the course of
50 days, indicating that discovering P2P communities by our
approach can lead to quicker discovery of bots than current
reactive methods.

REFERENCES

[1] C. G.Bartlett, J.Heidemann and J.Pepon, “Estimating P2P traffic volume
at USC,” in Technical Report,USC/Information Sciences Institute, 2007.

[2] A.Madhukar and C.Williamson, “A longnitudinal study of P2P traffic
classification.” in Proc. of Int. Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunications Systems, 2006.

[3] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport
Layer Identification of P2P Traffic,” in Internet Measurement Conference
(IMC), 2004, pp. 121–134.

[4] D. Dittrich and S. Dietrich, “P2P as botnet command and control: A
deeper insight,” in MALWARE 2008. 3rd International Conference on
Malicious and Unwanted Software, 2008.

[5] ——, “New directions in peer-to-peer malware,” in IEEE Sarnoff Sym-
posium, April 2008.

[6] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: Overview and case study,” in First Workshop on
Hot Topics in Understanding Botnets, 2007.

[7] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measurements
and mitigation of peer-to-peer-based botnets: a case study on Storm
Worm,” in LEET’08: Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, 2008.

[8] http://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-
fortifying-botnet.

[9] S. Nagaraja, P. Mittal, C. Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding P2P bots with structured graph analysis,” in Proceedings of the
19th USENIX conference on Security, 2010.

[10] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy P2P botnets using statistical traffic fingerprints,” in Interna-
tional Conference on Dependable Systems and Networks, Dependable
Computing and Communications Symposium, 2011.

[11] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering
analysis of network traffic for protocol- and structure-independent botnet
detection,” in 17th USENIX Security Symposium, 2008.

[12] B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: Identi-
fying local members of peer-to-peer botnets using mutual contacts,” in
26th Annual Computer Security Applications Conference, 2010.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in Proceedings of the ACM SIGCOMM
2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Philadelphia, Pennsylvania,
USA, August 22-26, 2005, 2005.

[14] S. A. Baset and H. Schulzrinne, “An analysis of the skype Peer-to-
Peer internet telephony protocol,” in IEEE International Conference on
Computer Communications (INFOCOM’06), 2004.

[15] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” in Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS’08),
February 2008.

[16] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”
in Proceedings of the 5th international conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2008.

[17] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter:
Detecting malware infection through ids-driven dialog correlation,” in
Proceedings of the 16th USENIX Security Symposium, August 2007.

[18] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee, “Active
botnet probing to identify obscure command and control channels,”
in Proceedings of the 2009 Annual Computer Security Applications
Conference, ser. ACSAC ’09, 2009.

[19] Z. Xu, L. Chen, G. Gu, and C. Kruegel, “Peerpress: utilizing enemies’
p2p strength against them,” in Proceedings of the 2012 ACM conference
on Computer and communications security, ser. CCS ’12, 2012.

[20] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, pp. 75–174, 2010.

[21] E. Stinson and J. C. Mitchell, “Towards systematic evaluation of the
evadability of botnet detection methods,” in Proceedings of the 2nd
conference on USENIX Workshop on offensive technologies, 2008.

[22] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, 2003.

[23] Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun, “PLDA+: Parallel Latent
Dirichlet Allocation with data placement and pipeline processing,” in
ACM Transactions on Intelligent Systems and Technology, special issue
on Large Scale Machine Learning, 2011, http://code.google.com/p/plda.

[24] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” PNAS, vol.
101, no. suppl. 1, pp. 5228–5235, 2004.

[25] http://www.spamhaus.org/zen/.
[26] http://www.iana.org/assignments/service-names-port-numbers/service-

names-port-numbers.txt.
[27] http://windowssecrets.com/top-story/watch-a-live-video-share-your-pc-

with-cnn.
[28] P. Erdos and A. Renyi, “On the evolution of random graphs,” in

Publication of the Mathematical Inst. of the Hungarian academy of
sciences, 1960, pp. 17–61.

[29] R. Z. Albert and A. B. Director, “Statistical mechanics of complex
networks,” in Reviews of Modern Physics 74, 2001.

[30] http://mtc.sri.com/Conficker/addendumC/.
[31] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical

dirichlet processes,” Journal of the American Statistical Association, vol.
101, 2004.

[32] T. Griffiths and Z. Ghahramani, “Infinite latent feature models and the
Indian buffet process,” Gatsby Unit Technical Report GCNU-TR-2005-
001, Tech. Rep., 2005.

