CoCoST: A Computational Cost Sensitive Classifier

Liyun Li*, Umut Topkara*, Baris Coskun’ and Nasir Memon*
*Computer Science and Engineering Dept.
tElectrical and Computer Engineering Dept.
Polytechnic Institute of NYU
6 Metrotech Center, Brooklyn, NY
{liyun, topkara, baris}@isis.poly.edu , memon@nyu.edu

Abstract— Computational cost of classification is as impor-
tant as accuracy in on-line classification systems. The compu-
tational cost is usually dominated by the cost of computing
implicit features of the raw input data. Very few efforts
have been made to design classifiers which perform effectively
with limited computational power; Instead, feature selection is
usually employed as a pre-processing step to reduce the cost of
running traditional classifiers. We present CoCoST, a novel and
effective approach for building classifiers which achieve state-
of-the-art classification accuracy, while keeping the expected
computational cost of classification low, even without feature
selection. CoCost employs a wide range of novel cost-aware
decision trees, each of which is tuned to specialize in classifying
instances from a subset of the input space, and judiciously
consults them depending on the input instance in accordance
with a cost-aware meta-classifier. Experimental results on a
network flow detection application show that, our approach
can achieve better accuracy than classifiers such as SVM and
random forests, while achieving 75%-90% reduction in the
computational costs.

Keywords-Cost Efficient Decision Tree, Suppressed Cost,
Inverse-Boosting, Meta-Classifier

I. INTRODUCTION

Machine learning classifiers are widely used in on-line
real-time scenarios, such as medical diagnosis [1], net-
work intrusion detection [2][3][4][5], spam filters [6], and
recommender systems [7][8]. A major concern for these
classification tasks, besides accuracy, is the computational
cost of making a decision, i.e. price, CPU time, storage,
and/or power use. In most of these applications, the online
computational cost, or the test cost, is much more important
than the model building cost(training cost) because the
classifiers can be built offline while classification tasks
must be accomplished online. In this paper, we present an
effective machine learning classifier, CoCoST, which can
achieve not only high classification accuracy, but also low
expected classification computational cost, thereby enabling
effective use of classifiers for the above practical scenarios.
The basic idea is that CoCost employs a wide range of
novel cost-aware decision trees, each of which is tuned
to specialize in classifying instances from a subset of the
input space. For instance, some trees are specialized in
classifying easy-to-classify instances without using costly

features, whereas some trees focus on hard-to-classify in-
stances without any computational concerns. Finally, CoCost
judiciously consults these trees depending on the input
instance in accordance with a cost-aware meta-classifier.

The computational cost of running a classifier online has
two major contributors: i) information extraction from the
unseen test instance, e.g. lab tests, parsing, remote database
lookups, etc. ii) running the decision function or algorithm
using the test and training information. Pre-computing mod-
els or summaries of the training information helps reduce
the cost of the latter contributor. Since the unseen instances
do not yield to pre-computation as much, feature extraction
remains as the bottleneck of computational cost of on-line
classification. In order to fit the feature extraction costs to
a computational budget, it is common to employ feature
selection which chooses a suitable subset of the features to
be used with a traditional classification method. The number
of features or the total budget of the feature extraction
is an adjustable parameter in feature selection which we
can use to tune the trade-off between the accuracy and
cost of classification. As the number of selected features
gets smaller, the computational cost of feature extraction
gets lower, and depending on the information content of
the dismissed features, classification accuracy gets lower as
well.

Traditional classification algorithms commonly require the
extraction of a fixed set of features for all the training
and testing instances, and in order to operate under com-
putational budget limitations, they need to employ feature
selection to reduce the size of this feature set. CoCoST
adapts an alternative approach to cost budgeting: CoCoST
examines the complete set of features for all instances during
classifier training, which results in a classifier that judi-
ciously chooses a unique set of features to be extracted for
each unique test instance, thereby minimizes the expected
cost of classification while still achieving the best accuracy.
Instead of following the one-size-fits-all feature extraction,
CoCoST creates a specific feature set for each test instance;
note that the union of all the feature sets in CoCost may
cover all of the initial set of features for the given data.
CoCost achieves this unique ability by employing a range
of decision trees under the control of a meta-classifier and

extracting the required features as the tree nodes are visited
during classification. Some of the paths from the root to
the decision leaves do not contain all the features, and the
instances that are labeled using such decision paths will have
lower classification cost. As a result, CoCoST can achieve
high classification accuracy and still keep the expected
computational cost for each instance low. In particular, we
tested our algorithm under a practical scenario of network
flow data type detection [9]. Our classifier achieves the
accuracy of the state-of-the-art SVM classifier with only
10%-25% of its cost.

Prior Work:

Decision trees are often associated with costs. There are
generally two kinds of cost in decision tree classifiers, mis-
classification cost and test cost. Misclassification cost occurs
where there is penalty for making mistakes in classification.
Test cost refers to the cost incurred by feature extraction
and measurement, and is usually measured in computing
time, storage or power use. In particular, we are interested
in building a decision tree that has the smallest expected
computational test cost.

Earlier work [10][11][12] focused on minimizing the error
weighted by misclassification cost, where the cost refers
to the penalty incurred by misclassification. There is also
research work [13][14][1] aiming to construct tree classifiers
with low worst or average testing cost. Most of them are
based on single ID-3 like tree classifiers. The heuristic is
usually in the form of the entropy gain over the feature cost.

One limitation in these existing test cost efficient trees
is that, in building the tree, it is not possible to change the
sensitivity to cost because the frequency information of each
node(the fraction of instances in each node) is not taken into
consideration. However in practice, we might want the tree
features to be cheap at the root where all the instances are
tested, while we are not very sensitive to cost when at the
bottom level where only a small portion of the instances are
tested. To solve this problem, we originated the ”Suppressed
Cost” heuristic, where we can change the sensitivity to cost
through tuning one parameter. In this way, we are able to
build tree classifiers that are very sensitive to cost at the root
and become less sensitive as the tree grows to the bottom
and the frequency of each node gets smaller.

Individual tree classifiers are not very accurate and are
susceptible to problems such as overfitting [15]. Various
techniques are developed to improve the accuracy of tree
classifiers [16]. AdaBoost [17], is a meta-algorithm that is
constructed from various individual trees. The idea behind
the adaptive boosting technique is to combine diversified
weak hypotheses into a more accurate hypothesis. Breiman
originated the meta-classifier Random Forest [18], which
performs better than Adaboost on noisy data by utilizing
bagging data and random feature selection. Both of these
meta-classifiers are trying to combine different weak classi-

fiers into a more robust and accurate hypothesis. There are
also research papers that try to combine tree classifiers with
genetic algorithms [13], so that a more diversified pool of
potential good decision trees could be obtained.

Contributions:

The main contribution of this paper is three-fold. Firstly,
by taking into consideration the frequency of each node(i.e.
nodes with fewer data instances passing through them are
allowed to contain more expensive features), and looking
forward in building a decision tree, we propose a new
decision tree algorithm, called one step look-ahead tree
with *Suppressed Cost’(abbreviated as 'LASC Tree’ in the
rest of paper), as our base weak classifier. Experimental
results show that, by taking into account the frequency
information of each node and expanding the search space
by looking ahead, an increase in efficiency can be expected
with high probability. Secondly, to train different tree clas-
sifiers specialized at different target classes, we extend the
technique of inverse boosting by taking the test cost into
account, which actually provides inverse boosting with a new
meaning for practice. Inverse boosting provide specialized
trees which tend to use cheap features to classify the easy
instances. Finally, by combining inverse-boosted trees and
standard Adaboost trees using stacked generalization, where
the decisions of each tree on some validation data become
features for the new meta-classifier, we obtain a meta-
classifier with high accuracy and low cost. This technique
of building meta-classifiers over various weak classifiers
that are specialized at different targets, provides a general
approach to construct better meta-classifiers.

The rest of the paper is organized as follows: In section
II, we describe some existing cost efficient decision tree
classifiers. In section III, we discuss in detail how to build
the base classifiers using the suppressed cost, how to boost
and inverse-boost those base classifiers to get specialized
trees, and finally the way we combine those classifiers into
a meta-classifier. In section IV, experimental results are
presented and we compare performances of different base
classifiers and meta-classifiers. Conclusions and limitations
are discussed in section V.

II. PRELIMINARIES AND BACKGROUND

Decision tree classifiers (DTC) are unstable and diverse
classifiers that are easy to implement [19][20]. The ’support’
of a decision tree, where we call *frequency’, is defined as
the expected fraction of instances coming to a node. For
convenience and without loss of generality, in this paper, we
only discuss binary split decision tree because it is proved
that any decision tree with multiple split can be uniquely
transformed to an equivalent binary split decision tree [20].
In this section, we first describe feature computational cost
and the expected computational cost for a decision tree. Then
we give a brief description to the cost-efficient variants of
the C4.5 trees by Quinlan[16].

A. Feature Computational Cost

Computational cost associated with the features can be
measured in computing power, memory occupation and cpu
time. It is common that a more computationally expen-
sive feature usually provides more discrimination power
in classifying ambiguous cases than a cheap feature[l].
The question is whether the high computational price paid
for this expensive feature justifies the gain in discrimi-
nation power[l]. In reality, asymmetry usually exists in
the instances. Some instances are easy to classify while
others might be hard to differentiate. This phenomenon
illuminates that we can choose cheap features to classify
the easy instances, and put more computing power into
those ambiguous instances where expensive features provide
more discrimination information. With this approach, tree
classifiers have an implicit advantage as decision trees are
naturally hierarchical. The decisions given by a tree classifier
are incremental while other state-of-the-art classifiers, such
as Support Vector Machine(SVM), gives a decision only
after calculating all the feature values of each instance. In
this sense, tree classifiers are internally more efficient while
still maintaining reasonable accuracy.

The expected testing cost for a decision tree can be defined
as: N
Y i1 PathCost(i)
N N

where PathCost(i) is the total computational cost of one
instance incurred along its path to the leaf and N is the total
number of instances. If all the feature costs are indepen-
dent and there is no overlapping of the feature costs, the
PathCost(i) can be written as:

PathCost(i) = Z c(4) (2

J€{wr;}

Cost(T) ey

where ¢(j) is computational cost associated with feature j,
and the sum is taken over all the k; features zg,, ..., Tg;
along the path.

B. Cost Efficient Variants of C4.5 Trees

The ID3 and its successor C4.5 tree families[21][16]
take an information theoretic approach to choose the fea-
ture for splitting. They use Shannon’s Entropy, defined as:
H = =3, pilogap; to design the heuristic. In ID3, the
feature that yields the maximum information-gain between
the parent and its children, defined as: I(Cy; Xi) =
H(Cy)—H(Cy|X}), is chosen as the feature in that node. In
C4.5, the GainRatio, which is the entropy gain normalized
by the entropy of the feature, is used as the split criteria.
In both ID3 and C4.5, the trees are built in a top-down
approach.

There are variants of C4.5 trees which take attribute costs
into consideration. Examples are EG2[14], CS-ID3[21], and
IDX][21]. Most of these cost efficient tree classifiers apply

a greedy algorithm and use heuristics to find the optimal
feature to use at each node. The feature that gives the
maximum heuristic value is chosen as the feature of the
current node. The EG2 uses heuristic:

P |

(c(@) + 1)’

where c¢(i) is the cost of the feature, w is a constant
parameter and AI; is the entropy gain the same as the
entropy gain in C4.5. The heuristic used in building CS-
ID3 tree is: AC(I;’; . And the IDX tree uses a similar heuristic:
AL
EON

One common limitation among those trees is that they
do not take the expected number of instances at each node
into consideration. But in reality, it is highly possible that
we have different cost preferences at nodes with different
sizes. At the root node(i.e. the biggest node), where each
unseen instance needs to be tested against the root feature,
we want the root feature to be very cheap and efficient. At a
deep level node, where few instances enter, we can tolerate
using features with expensive cost for a better discrimination
power. Therefore, we need a new heuristic, which takes into
account both the original feature cost and the frequency
information (how many of the examples are using this
feature). Then using this heuristic, we can build better cost
efficient tree classifiers. In the next section, we will present a
new heuristic using our originated ”Suppressed Cost”, where
the sensitivity of the cost is suppressed as the tree grows to
the bottom leaves.

3)

C. Bagging and Boosting

As individual trees may not be accurate, meta-classifiers
are built to improve the generalization accuracy. Among
those meta-classifiers, bagging and boosting are the most
popular and effective ones. They are meta-classifiers con-
structed from a pool of individual classifiers[22]. Brieman’s
Random Forest[18] applies the bagging method, where each
individual tree is constructed from N examples sampled
with replacement from the original training data. Because
of randomization, it is possible that the same instance might
be sampled more than once in building the decision tree.
A decision forest is the combination of these decision trees,
and the final decision for one unseen instance is the class that
wins the most votes from the unit vote of the individual trees.
Random Forest has many advantages, such as robustness
and insensitivity to overfitting[18]. And the accuracy on
those out-of-bag data gives an unbiased estimation of the
prediction accuracy.

Another meta-classifier is boosting forest[17], which
Breiman called ’the best off-the-shelf classifier in the world’.
Initially in boosting, every instance has an equal weight.
After a classifier is built in one iteration, the weight for
each instance is updated and in the next iteration the
classifier will be constructed from the new distribution of

data. Misclassified instances get more weight in the next
iteration and the correctly classified instances are given less
weight. Boosting is very successful in binary classification,
and can also be applied to multiple classes.

III. CoCOST: BUILDING THE UNIVERSAL CLASSIFIER
FROM THE SPECIALIZED

CoCost is a novel cost-sensitive classifier that combines
cost-aware decision trees, each of which specializes in cost-
efficiently classifying a subset of the input space, with a
cost-aware meta-classifier to achieve high accuracy and low
expected classification cost on the overall input space.

There are three key concepts in building CoCoST clas-
sifier: Suppressed Cost, Inverse Boosting and Stacked-
Generalization for the meta-learning. We describe each
concept in detail in this section.

A. The Base Classifier: LASC Tree—Look Ahead Tree with
Suppressed Cost

LASC trees have a greedy tree construction algorithm like
most traditional decision trees. There are two discriminating
properties in LASC trees as the name implies: i) Suppressed
Cost Heuristic, ii) Look Ahead Entropy Gain. Supressed
Cost brings into consideration the estimate of how often
a decision tree node will be visited during classification of
a large number of test instances. It is gathered from the
number of training instances that are being considered during
the recursive greedy tree construction step. Look Ahead
Entropy Gain enables us to find possible combination of
features that provides the largest discriminating power.

The suppressed cost heuristic is defined as:

e AT
- fre¢vC + (1 - freq®)

“)

Here, A is the entropy gain of the possible component
that is being considered, and C' is the normalized cost of
extracting it. freq is the fraction of training instances that
have followed path from root of the decision tree to the
current node. The exponent « is the parameter for controlling
the sensitivity of the heuristic to feature extraction cost. We
will first discuss how Suppressed Heuristic works, and then
describe how Look Ahead Entropy is used to improve the
trees.

Suppressed Cost
The most important feature for our tree construction heuristic
is that its sensitivity to feature extraction cost is ’suppressed”
when we are adding nodes to the tree that are far from the
root node. It is built on the observation that the expected
number of instances that will be processed by an internal
node decreases as we move down the tree, hence more
expensive features are allowable.

In Equation 4, for any fixed «, when we are near the root
level and freq is almost 1, freq®C will be dominating

while 1 — freq™ will be near zero. Therefore, the most
efficient combination of features will be chosen at the
root levels. As the tree grows, the instances remaining at
the newly-grown nodes are fewer. The freq® will become
smaller, resulting in less influence from the feature extraction
cost on the choice of features. Meanwhile, the item 1— freq®
will get larger. Noting that this item is a constant with
respect to the cost, the larger this item is, the less sensitive
the heuristic will be. At the bottom nodes towards the
leaves where freq is almost zero, the Suppressed Cost
heuristic will just select the features that provide the biggest
entropy gain, i.e. the features and/or leaves that provide the
largest discriminating power, which is commonly used in
construction of ordinary decision trees.

The parameter « is to control the speed that the effect
of cost is “suppressed”. The smaller this parameter is, the
slower the sensitivity to cost is ’suppressed’. Take two
extreme cases for example. If «v is very small, say 0.01, even
a very small frequency value will still yield a big value of the
item freq®, which makes the item freq®C more important
than the item 1— freq®™ and results in a very sensitive choice
of features due to the cost C'. If « is large, say 10, even the
frequency is near 1, the exponent item freq® will be very
small and cause the effect of the cost C' to be much less
significant. It has been observed that, for a large «, after the
root node, the heuristic H will choose the features that give
the maximum information gain because the denominator will
be almost constant.

AI: The Look Ahead Entropy Gain for all possible
components in building LASC

In C4.5, the calculation of entropy gain in the heuristic only
involves one node. However in LASC, as we enlarged our
search space significantly by exhaustively looking ahead one
step, the possible component chosen by the heuristic may
consist of two levels of nodes, as shown in Figure 1. If the
current frequency is so small that there is no much statistical
meaning of the entropy gain, a leaf node could also be
chosen, which corresponds to the case e) in Figure 1

o ° °

a) all are feature nodes b) the right child ¢) the left child
is a leaf node is a leaf node
D D D D :Leaf node
:Feat d
d) both children e) leaf node . cature node

are leaf nodes

Figure 1. Five Possible Components of the One Step Look-Ahead Tree
with Suppressed Cost(LASC Tree)

The tree is grown recursively adding the fittest” compo-
nent which has the largest heuristic value(H value) among
the five types of possible components. To prevent overfitting
for individual trees, pre-pruning is performed when nec-
essary so that the tree stops growing if there are too few
instances.

Experiments show that the look ahead enables us to find
good combinations of two features that might not be found
by a node-by-node search. The price we pay is that the
complexity of searching the component is now O(n?3) with
respect to the number of features. The advantage of looking
ahead is discussed in [23]. It is worth mentioning that
unless we take feature extraction cost into consideration,
even though it is highly possible that looking ahead will
yield better trees (better accuracy and smaller size), it may
also result in trees with pathology (bigger tree and lower
accuracy).

B. Building the Specialized: Boosting and Inverse Boosting

The idea of boosting is to iteratively focus on the “hard”
instances, which cannot be correctly labeled by the classi-
fiers in hand, so that a lower error rate will be achieved if all
the classifiers of the iterations are combined. When decision
trees are used as base-classifiers in boosting, these highly
specialized trees tend to have larger size, and they incur
larger test costs as well, when they make use of expensive
features.

Inverse boosting was originally invented to create ensem-
bles of classifiers with high diversity[24], [25]. However,
when combined with cost efficient classifiers, inverse boost-
ing can be utilized to obtain more specialized classifiers. We
propose the technique of inverse-boosting to train classifiers
that are more specialized on the “easy” part of the data.
Since this relieves the tree construction from the obligation
to correctly classify harder instances, inverse-boosted trees
are smaller, and they make errors by bending the stick to
the other side. This is especially useful in practice when
there are asymmetries in the difficulty to classify instances.
Here by asymmetry, we mean that some instances are
more difficult to classify than other instances. Note that the
difficulty for classification might be typical among instances
of specific classes, or it could be for instances that are near
a decision boundary; The algorithm does not treat the two
cases separately.

The idea of inverse-boosting is to iteratively generate
computationally cheaper classifiers specialized on the “easy”
instances, i.e. the instances that have already been classified
correctly by the classifier at the previous iteration.

In standard boosting, given the weights D(i),i = 1...M
and the error rate ¢; of the current classifier, the new weight
is updated as:

Dy(i)ep(=Bil (y: (i) = hi(X5))

Dyy1(i) = Z,

&)

where the indicator I selects those correctly labeled in-
stances from the previous iteration,

1, if y(i) = he(X5)
—1, otherwise

() = 1% = { ©
and —f reduces their weight at each iteration so that the
classifier focuses on incorrectly labeled instances.

1 1-— €t

Btzalog o @)

Here Z, is the normalizing vector. In inverse-boostig, we
want to focus on the ’easy’ part of the data. Therefore, the
new weight for each instance is obtained by simply changing
the sign in front of [3:

Dy(i)eap(Bil (e (i) = hi(X5))
7

Dy (i) = ®)

Note that Equation 8 is not the only way to reassign
the weights in inverse-boosting, and it does not have the
statistical meanings of the Equation 5 in standard boosting.
An empirical result is presented in the next section that
shows how accuracy of inverse-boosting converges with
different choices of re-weighting functions.

C. Combine the Specialized into a Meta-Classifier

CoCost uses a cost-sensitive meta-classifier to combine
the classification power of different trees which are spe-
cialized at different types of instance. As mentioned in the
previous section, we can create such trees from boosting and
inverse-boosting LASC trees. These inverse-boosted trees
tend to be inexpensive and accurate at the “easy” part
of the data, and the standard boosted trees will be more
expensive as they are trained to focus at the ’hard” instances.
CoCost judiciously combines these specialized LASC trees
to construct a more accurate meta-classifier that works well
on all types of instances.

The way we generate the meta-classifier is to use the
’Stacked Generalization’ method. The decision of each
boosted and inverse-boosted tree on the validation data
becomes a new feature in the meta-classifier, and the
computational cost of each new feature is the expected
computational cost of each tree. Eventually in the meta-
classifier, each feature variable is actually one boosted tree.
Note that the number of “features”(or trees) that the meta-
classifier processes might be arbitrarily large, since it is
simply the number of base-classifiers that we build.

CoCost’s way of building the meta-classifier is also to use
the cost sensitive LASC tree (with a=1). The LASC tree
meta-calssifier allows us to choose a unique set of special-
ized trees in order to identify each test instance. In the next
section, we present experimental results that demonstrate the
advantages of using CoCost’s meta-classifier.

IV. EXPERIMENTAL RESULTS

We test our algorithm in a network flow detection sce-
nario. The objective is to classify the underlying network
traffic data type from the statistical features of the network
package payload. The advantage of avoiding looking into
the headers is that it is easy to forge the file headers but
it is almost impossible to change the underlying statistical
characteristics of the file content. The only way to obscure
the statistical features of the file is to encrypt.

A. Data and features

There are eight data types in this application—TXT, BMP,
WAV, JPG, MP3, MPG, ZIP and ENC. The feature set we
used comes from a Network Abuse Detection system called
Nabs. The features are generally the statistical characteristics
of the network flows, such as mean, variance, and entropy.
A detailed feature description can be found in [9]. Noting
that in Nabs, the features are extracted from a chunk of
16Kbytes data randomly sampled from the network flow.
We expanded the 22 features by randomly sampling chunks
of 2Kb, 4Kb, 8Kb, and 16Kb from the network flow and
recorded the average computational cost for the features
in terms of computing time. The computational cost for
these features are shown in Appendix A. In particular,
there are overlapping costs in different features. All the
frequency domain features (labeled by an **’ in TableIV)
require the computation of an FFT from the sampled data.
This implies that, if one of the frequency domain features
is calculated and the FFT result is calculated and stored,
then the cost for other frequency domain features will be
lowered greatly. This important character of the feature costs
give tree & forest classifiers an extra advantage. Trees give
decisions incrementally and the overlapping of the feature
costs decreases the average cost of one instance.

The raw data we used consists of files we arbitrarily
downloaded from the internet. There are 1200 files, each
type with 150 files. We choose an uniform distribution of
the data types because we do not differentiate between the
importance of various data types and assume that they are
equally important. The only constraint on these files is that
the file should be bigger than 50Kbytes, which makes the
random sampling of different data chunks meaningful. We
put 2/3 of these files as training files where training instances
are extracted, while the remaining 1/3 are used as testing
files. We extracted 2400 data instances from 800 files, each
type with 100 different files. The remaining 400 test files
are used to provide 1200 testing instances. The reason for
choosing 2400 instances for training is that the learning
curve (Figure 2) shows that the accuracy (on the same
testing data) gets saturated when it is more than around 1500
training instances. And we use more than 1500 instances
because we can reserve a proportion of the training data as
validation data in building a meta-classifier.

The Learning Curve

— T

Total Accuracy
° °
< =

o
S
T

o
i)
T

o L
0 5

10 15 20 25 30 35 40 50
Number of Training Instances (x100)

Figure 2. The Learning Curve: Number of Instances Versus Accuracy
Using the C4.5 Classifier

B. Performance of different base classifiers

1) Performance Comparison on Random Feature Selec-
tion: First, we compare the performance of our base clas-
sifiers, the LASC Tree with Suppressed Cost with the C4.5
trees and the state-of-the-art SVM classifiers. We use the
public SVM library[26] and choose the RBF kernel. To
get a general view of the possible performance of the tree
classifiers, we randomly pick up a subset of all the features,
and build each classifier from these features. The parameters
for SVM are chosen using a 10-fold cross validation on the
training set. The performance of a classifier is the expected
computational cost of one instance, and the weighted accura-
cies on all the target types. We do not take model building
time into consideration because the training is performed
offline.

As shown in Figure 3, 5 to 88 different features are
randomly chosen from all the 88 features, and to generate
more diverse tree classifiers, we injected randomness into
these trees as follows: at each node of any tree, only a
random half of all the selected features are available for
building the tree. At each feature set, the plus points are
the performances of C4.5 trees while the star points are the
performances of LASC Trees with suppressed cost. Note
that « is set to a median sensitivity of 1, and the effect of
this parameter is discussed later. It is obvious that through
building trees computational cost efficiently, we can get
much lower cost at the same accuracies. The only drawback
is that LASC Tree cannot get the highest accuracy 88.75%
achieved by SVM using all the features at a very expensive
cost around 200ms.

2) Performance Comparison on Deterministic Feature
Selection: The performance of random feature selection
provides a picture that through cost efficiently building clas-
sifiers we can save significant computational cost. However,
it is notable that the number of all the possible feature com-
binations out of 88, Zfil C§8 Jis an astronomical number,
which we cannot cover all the possibilities using random
feature selections. Therefore, we need to deterministically
choose a set of features from the 88 features.

With SFS(Sequential Forward Feature Selection)[27], we
can choose the features with most discrimination informa-

Performance of Random C4.5, LASC Tree and SVM with Random Feature Selection
T T T T T T T T T

0.8

Total Accuracy
o
[=2)
T

o
&

RN Random C4.5 Trees
ookh 7 » - Random LASC Trees

. . . .
60 80 10 120 140 160 180 200
Expected Cost for One Instance (ms)

Figure 3. Performance of base classifiers with Random Feature Selection.
The lines are envelop of the performance points of the three classifiers. It
shows that LASC Tree with Suppressed Cost is more cost-efficient than
C4.5 and SVM

tion. Taking the cost of each feature into consideration, the
feature is re-ordered by its discrimination score over its cost.
Table I provides the performance of the LASC Tree and
other classifiers at different subsets of features.

It can be seen from the table that among all the classifiers,
the LASC Tree usually gives the best performance but the
difference in accuracy diminishes as bigger feature sets are
used. CS-ID3 and EG2 trees perform favorably over IDX
trees on larger feature sets, and CS-ID3 and IDX generate
identical trees when using 6 and 7 selected featyres because
the two similar heuristic function ACI and ACI choose the
same features with certain feature sets. '

C. Performance of CoCoST Versus Random Forest

In this section we compare the performance of the Co-
CoST with the Random Forest. We used the LASC Tree
as the base classifier for both Random Forest and CoCoST.
To make the Random Forest more efficient, short-cutting is
applied in the unit vote. For example, if among 5 trees, the
first 3 of them agree on the same decision, there is no need
to calculate the cost for the other two and the cost is saved.

As the number of trees increases, the accuracy of Random
Forest quickly converges and the cost incurred is larger.
Efficiency of the Random Forest decreases quickly as the
number of the tree members in the forest increases. With
many trees in the forest, the accuracy saturates to the limit
but the cost increases approximately linearly. Also with
different o values, the accuracy of the forest increases as «
increases. We tried Random Forests that consist of different
vales of the sensitivity parameter «. The best result is
recorded as the benchmark for evaluating CoCoST.

1) Changing the Sensitivity to Cost by Tuning o: The
parameter o in our base classifier controls the trade-off
between accuracy and cost. It determines how fast the sensi-
tivity to cost is suppressed” as the tree grows.Table II shows
how the accuracy and cost will change as the parameter «
changes. The classifiers are built on the set of 14 features
selected by SFS. As « increases, the tree tends to ignore
the cost and just picks up the features that provide more

Table II
CHOOSING DIFFERENT VALUES OF o WILL CAUSE DIFFERENT COST
SENSITIVITY SUPPRESSION

a Accuracy(%) | Cost(ms
0.1 77.97% 3.115
0.2 78.24% 4241
04 79.13% 4.940
0.8 81.29% 6.558
0.95 81.78% 6.384
1.0 82.51% 7.625
1.5 83.34% 11.58
20 83.93% 18.55
40 84.73% 33.10

0.8221-

0.814f (/ ‘
0.812F ¥ 4t

+

—+— Track 3
- -~ Track 1 4
+ Track2

36 38 4

.2 24 26 28 3 3.2 3.4
Expected Cost for One Instance

Figure 4. Individual Tree Performance of Inverse Boosted Trees

significant entropy gain. Therefore, with big « values, such
as 2 or 4, the accuracy increases along with the cost. On the
other hand, when « is small, say 0.1, we obtain a tree that
is very cheap but has a lower accuracy. A good point for
this cost accuracy trade-off is to set a to 1 when we want
to use single tree as the classifier.

2) Performance of CoCoST: For CoCoST meta-classifier,
we boosted and inverse-boosted 10 trees for each « appear-
ing in Table II. Figure 4 shows the performance of inverse
boosted trees with different re-assigning weights. The indi-
vidual boosted tree’s total accuracy actually decreases as we
put more focus on the misclassified examples.

Depending on how we update the inverse-boosting
weights, the inverse-boosted tree points are plotted in differ-
ent tracks in the picture, each track representing a path of
inverse-boosted trees using a different weighting function.
Track 1 is the inverse-boosting we suggested in Section 3,
while for Track 2 and 3 we tried the square and the square
root of the reweighting function in Track 1. It can be seen
that the only difference of these tracks is the speed they
converge. The arrows in the graph shows that difference of
accuracies at same costs will finally decrease to a very small
value.

Because we only want trees that are specialized in a local
part of the data, we discarded the first 9 trees and only kept
the last tree in building the meta-classifier. Finally we have
16 candidate trees, boosted and inverse-boosted by the 8
different values of «. Their decisions on the validation data
become the new training data on the meta-classifier, and the
expected cost of each tree is now treated as the new price

PERFORMANCE OF DIFFERENT BASE CLASSIFIERS ON DIFFERENT SIZES OF FEATURES SETS CHOSE BY SEQUENTIAL FORWARD FEATURE SELECTION

Table 1

Cost Distribution for CoCoST & Random Forest
0.3! T T T T T T

MlICoCoST
Il Random Forest|

Frequency

60 70 80 90

0 10 20 30

40 50
Cost(Milliseconds)

Figure 5. Compare the Frequency-Cost distribution between CoCoST and
Random Forest. Noting that the distribution for SVM is only one bar as all
the instances have the same cost

of the features. We again use our base learner to build the
meta-classifier and set the « to 1 in this meta learning.

The tree structure of the meta-classifier is plotted in
Figure 6. The accuracy of the classifier 89.51% with an
expected cost for each instance 14.63, which is more than
10 times cheaper than the SVM classifier with an accuracy
of 88.75%. It is also much better than the most accurate
Random Forest we have ever obtained. The comparison is
shown in Table III.

The final CoCoST meta-classifier expressed our idea that
each tree is specialized at its own local part of the data,
and combining them we can get very good results. The raw
types(TXT,BMP and WAV) can be determined by the cheap
inverse-boosted trees, while the compressed types(ZIP and
ENC) are usually decided by two of the specialized boosted
trees. Also the CoCoST has nice properties of generating
classification rules that are interpretable. For example, the
left most TXT decision presents the rule that if two inverse-
boosted trees, which are already cheap and accurate at the
raw types, agree that it is a TXT instance, then it is precise
enough to just give an decision of TXT and there is no need
to classify the instance using other trees. As we build the
meta-classifier also cost-efficiently, it is shown in the graph
that larger v values only appear at the bottom. For example,

Buffer Size(KB) 2KB 2KB 4KB 2KB 4KB and 8KB 2KB 4KB, 8KB and 16KB
No. Of Features 6 7 14 21 28 35 42 88
Accuracy(%) LASC Tree(a=1) | 80.45% 81.44% 82.51% 82.70% 83.73% 83.89% 84.57% 85.01%
Cost(ms) 3.167 3279 3.878 8.852 13.61 23.89 32.73 58.27
SVM 78.26% 79.34% 79.59% 81.44% 82.95% 84.76% 87.71% 88.75%
5470 6.449 12.60 20.35 3291 74.32 1455 189.2
IDX 80.37% 80.61% 80.53% 82.11% 82.23% 82.74% 82.98% 83.22%
3.367 3.199 4.295 8918 14.37 26.37 38.26 60.42
CS-1D3 80.37% 80.61% 81.95% 82.03% 82.87% 83.19% 83.36% 83.76%
3.367 3.199 4.208 8.753 1291 23.37 35.85 54.83
EG2 78.35% 80.54% 81.43% 82.12% 82.85% 82.96% 83.32% 83.89%
3.098 4929 5.133 10.23 13.77 28.84 37.60 67.99
DL8 80.50% 81.82% 83.58% — — — — —
19.16 5.655 9.170
C45 79.50% 80.14% 83.58% 82.64% 83.15% 83.27% 83.95% 84.55%
19.34 5.197 9.170 14.38 2701 34.94 34.94 72.12
Table IIT

COMPARISON AMONG COCOST,SVM, AND THE BEST RANDOM
FOREST(ax=1,CONSISTING OF 20 TREES)

CoCoST SVM Random Forest
Accuracy 89.51% 88.75% 86.53%
Cost 14.63 189.2 40.11

the largest o values in the structure are 1.5 and 2.0. And they
only appear after a series of trees with smaller « values have
been tested. These trees are selected to classify the classify
the most “confusing” part of the data.

3) Cost Distribution: CoCoST versus Random Forest:
Noting that the averaged cost does not tell the whole story,
the frequency distributions for each testing instances in
CoCoST and the best Random Forest are plotted in Figure 5.
It shows that CoCoST has a distribution of two peaks, where
the easy and difficult instances are clustered. However,
for Random Forest, the distribution is more like uniform
because there is no mechanism allocating the cost. This
graph explains why CoCoST performs much more efficient
than ordinary classifiers. Because we do not know where the
incoming instance may lie in the spectrum, Random Forest is
more probable to incur more cost in classifying this instance.
However, if we use CoCoST, the possible testing cost for
the instance can only be around the two peaks of the cost
distribution.

V. CONCLUSION

CoCoST is a very efficient tool in predictions where
feature computational cost is an important concern. Because
of the asymmetric in the data, it is possible to design
classifiers that are only accurate at the clustering parts
of the data. The asymmetry in the data lies in the fact
that some instances are associated with the features of
less computational cost while some instances require the
information provided exclusively by the expensive features.
Combining those diversified and specialized classifiers cost-
efficiently into a meta-classifier, we can generate an accuracy

)
N4/ Fake N
True 04/

- 7B
Xy \0.8/
\0.6/ AN »
X (B o/ @
\0.6/ » S !
W (W
. A B
B X . Ty
W () 1@
\0.6/ , E
Ja B E
» Y VA E
B W /
E
Type Leaf with type information

Decision of an Inverse Boosted Tree
with specific o value

Decision of a Standard Boosted Tree
with specific o value

Figure 6.

almost the same as the SVM classifier using all the features,
while the expected computational cost is only 10% of SVM.

The main limitation of the CoCoST classifier is the
asymmetry requirement in the data. If the instances are
associated with features that are of the same computational
cost, it is possible that that we cannot construct classifiers
of different prices and specialities. A further investigation
of the measurement of the asymmetry between classification
difficulty and cost will be performed. Also noting that each
individual tree is only for binary decisions(such like if the
decision is TXT), there is still space to cut the cost. And we
leave this as the future work.

VI. APPENDIX A

Table IV shows the costs of the features. The frequency
features are calculated from a 1024-point FFT of the original
data flow samples. These frequency features have overlap-
ping costs. Once one of the frequency feature is calculated,
the cost of all the others is decreased to 0.2.

ACKNOWLEDGMENT

The authors would like to thank Lisa Hellerstein for
helpful discussions. Also we extend our thanks to the three
anonymous reviewers for their constructive feedback.

REFERENCES
[1] A. Kapoor and R. Greiner, “Learning and clas-
sifying under hard budgets,” Machine Learning:
ECML 2005, pp. 170-181, 2005. [Online]. Available:

http://dx.doi.org/10.1007/11564096_20

[2] T. Abbes, “Protocol analysis in intrusion detection using
decision tree,” in In Proc. ITCCO04, 2004, pp. 404-408.

J,

z

Types:

B =bmp M

E =enc W

G =mpg X
I =ipg z

N
\0.6/

TN /M

\0.8/ \04/

Structure of the CoCoST meta-classifier

=mp3
=wav
=txt
=zip

Table IV
COMPUTATIONAL PRICES(MILLISECONDS) FOR EACH FEATURE WITH
DIFFERENT BUFFER SIZE

Feature 16K 8K 4K 2K
Entropy 2.381 1.521 | 0.734 | 0.802
Mean 0.548 0271 | 0217 | 0.094
Variance 3.589 1.824 | 0904 | 0.661
Autocorrelation 4227 1837 | 1046 | 5.358

Mean, Var, Power and 1.614 0.939 1.002 1.543

Skewness in the first %

frequency band*

Mean, Var, Power and 1.251 0.778 | 0912 | 0979

Skewness in the second i

frequency band*

Mean, Var, Power and 1.097 1.007 | 0907 | 0.967

Skewness in the third 1

frequency band*

Mean, Var, Power and 1.591 1.204 1.193 1.185

Skewness in the fourth %

frequency band*

Skewness 13.94 6.668 | 3.558 | 1.536
Kurtosis 13203 | 6491 | 3.746 | 1.671

[3] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision
tree classifier for network intrusion detection with ga-based
feature selection,” in ACM-SE 43: Proceedings of the 43rd
annual Southeast regional conference. New York, NY, USA:
ACM, 2005, pp. 136-141.

[4] C. Kruegel and T. Toth, “Using decision trees to improve

signature-based intrusion detection,” in In Proceedings of

the 6th International Workshop on the Recent Advances in

Intrusion Detection (RAID2003), LNCS v. 2820. Springer

Verlag, 2003, pp. 173-191.

[5] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K.

Chan, “Cost-based modeling for fraud and intrusion detection:

Results from the jam project,” in In Proceedings of the 2000

DARPA Information Survivability Conference and Exposition.

IEEE Computer Press, 2000, pp. 130-144.

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

(16]

(171

(18]

(19]

(20]

first international conference on Machine learning.

E. K. J. Alspector, “Svm-based filtering of e-mail spam with
content-specific misclassification costs,” in In Proceedings of
the Workshop on Text Mining (TextDM2001), 2001.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: an open architecture for collaborative filtering
of netnews,” in CSCW ’94: Proceedings of the 1994 ACM
conference on Computer supported cooperative work. New
York, NY, USA: ACM, 1994, pp. 175-186.

G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems a survey of the state-of-the-art and
possible extensions,” IEEE Trans. on Knowl. and Data Eng.,
vol. 17, no. 6, pp. 734-749, 2005.

M. K. Kulesh Shanmugasundaram and N. Memon, “Nabs: A
system for detecting resource abuses via characterization of
flow content type,” Computer Security Application Confer-
ence, Annual, vol. 0, pp. 316-325, December 2004.

C. X. Ling, Q. Yang, J. Wang, and S. Zhang, “Decision trees
with minimal costs,” in ICML *04: Proceedings of the twenty-
New
York, NY, USA: ACM, 2004, p. 69.

C. Elkan, “The foundations of cost-sensitive learning,” in In
Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence, 2001, pp. 973-978.

C. Drummond and R. C. Holte, “Exploiting the cost
(in)sensitivity of decision tree splitting criteria,” in In Pro-
ceedings of the Seventeenth International Conference on
Machine Learning. Morgan Kaufmann, 2000, pp. 239-246.

A. B. B. G. C. Anna Marconato, Michele Gubian and
D. Petri, “Accurate and resource-aware classification based
on measurement data,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 9, pp. 2044-2051, September
2008.

M. Nunez, “The use of background knowledge in decision
tree induction,” Machine Learning, vol. 6, no. 3, pp. 231—
250, May 1991.

C. Schaffer, “When does overfitting decrease prediction ac-
curacy in induced decision trees and rule sets,” in In Machine
Learning, EWSL-91. Springer-Verlag, 1991, pp. 192-205.

J. R. Quinlan, “Bagging, boosting, and c4.5,)” in In Pro-
ceedings of the Thirteenth National Conference on Artificial
Intelligence. AAAI Press, 1996, pp. 725-730.

R. E. S. Yoav Freud, “A decision-theoretic generalization of
on-line learning and an applicatio to boostin,” Computationa
Learning Theory, vol. 904, pp. 23-37, 1995.

E. Leo Breiman, “Random forest,” Machine Learning, vol. 45,
no. 1, pp. 5-32, October 2001.

S. K. Murthy, “Automatic construction of decision trees
from data: A multi-disciplinary survey,” Data Mining and
Knowledge Discovery, vol. 2, pp. 345-389, 1998.

S. R. Safavian and D. Landgrebe, “A survey of decision tree
classifier methodology,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 21, no. 3, pp. 660-674, 1991.

(21]

(22]

(23]

[24]

[25]

[26]

(27]

J. C. S. Ming Tan, “Two case studies in cost-sensitive
concept acquisition,” in In Proceedings of the Eighth National
Conference on Artificial Intelligence, 1990.

T. G. Dietterich, “An experimental comparison of three meth-
ods for constructing ensembles of decision trees,” in Bagging,
boosting, and randomization. Machine Learning, 2000, pp.
139-157.

S. Esmeir and S. Markovitch, “Lookahead-based algorithms
for anytime induction of decision trees,” in In ICMLO4.
Morgan Kaufmann, 2004, pp. 257-264.

Y. Freund and R. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,”
vol. 55, pp. 119-139, 1997.

L. I. Kuncheva and C.J. Whitaker, “Using diversity with three
variants of boosting: Aggressive, conservative, and inverse,’
pp- 81-90, 2002.

C. W. Hsu, C. C. Chang, and C. J. Lin,
“A practical guide to support vector classifica-
tion,” Taipei, Tech. Rep., 2003. [Online]. Available:

http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf

P. Somol, P. Pudil, J. Novovicovd, and P. Paclik, “Adaptive
floating search methods in feature selection,” Pattern Recogn.
Lett., vol. 20, no. 11-13, pp. 1157-1163, 1999.

