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Abstract— Perceptual hash functions have been recently pro-
posed as cryptographic primitives for multimedia security ap-
plications. However, many of these hash functions have been
designed with signal processing robustness issues and have not
addressed the key issues of confusion and diffusion that are cen-
tral to the security of conventional hash functions. In this paper
we give a definition for confusion and diffusion for perceptual
hash functions and show how many common perceptual hash
functions do not display desirable confusion/diffusion properties.

I. I NTRODUCTION

Data integrity is one of the core requirements of secure
systems. In the context of cryptography, the integrity or au-
thenticity of data is provided by a cryptographic hash function
using which the data is mapped to a short bit string called the
hash value or a message digest. The authenticity of the data is
then verified by simply recalculating the hash value from the
data and comparing it to the attached hash value. In order to
prevent tampering of the data, the hash value is protected by
either signing the hash (resulting in a digital signature) or by
using a secret key to compute or encrypt the hash (resulting
in a message authentication code). In this work we focus on
message authentication codes. A cryptographic hash function
h which is a member of MAC family generates a hash value
H from an arbitrary inputX and a secret keyK. That is,

H = h(X, K)

Since the hash valueH itself is protected by the secrecy of
a key, an adversary who would like to change the data needs
to do it either in a way the hash value still remains the same,
or guess the new valid hash value without knowledge of the
secret key that was used in its computation. If either of these
can be done, the receiver would regard the data as authentic,
although it is not.

In order for a message authentication code to to be regarded
as secure, it must be very hard to find the hash valueH without
knowing the secret keyK and it must be very hard to find the
secret keyK or the hash value of a new inputH ′ = h(X ′, K)
even if very large set of input-hash{Xi, Hi = h(Xi, K)}
pairs are given. A hash function typically achieves these
properties by its confusion/diffusion capabilities which are

explained in detail in Section II. More detailed information
about cryptographic hash functions and their security issues
can be found in [1], [2], and [3].

The recent proliferation of multimedia content in digital
form has led to the need for integrity mechanisms for such
data. Traditional cryptographic hash function based mecha-
nisms have been found lacking for this purpose due to the
peculiar nature of multimedia data. Namely, with multime-
dia data, the same content can have many different digital
representations. For example, an image can be represented
in different formats and would be perceptually be the same
although the two digital files would be entirely different. In
view of the above problem researchers in the signal processing
community have proposed the notion ofrobust hash functions.
Robust hash functions are designed to produce the same hash
value as long the input has not been perceptually modified.
Whereas cryptographic hash functions are designed to generate
a totally different hash value even if the input is changed by
a single bit, robust hash functions are expected to change
the hash value only if the input is perceptually changed.
This property is often known asrobustness. Although robust
hash functions have been designed for different types of
multimedia data, in this paper we restrict our attention to
robust image hash functions. Specifically we present a new
notion of confusion/diffusion for robust image hash functions.
We show that some of the best known robust hash functions
in the literature have poor confusion/diuffusion properties and
cannot be considered secure for data integrity applications.

The rest of the paper is organized as follows: in Section II
definitions of confusion/diffusion and their modifications for
robust hash functions are presented. In order to clarify the
perceptual difference concept, the notion of’perceptual unit’
is introduced in Section III. In Section IV we evaluate the
confusion/diffuison capabilities of three image hash functions
and finally we expose the vulnerability of these functions
against forgeries in Section V.

II. CONFUSION/DIFFUSION AND ROBUST HASH

FUNCTIONS

Sinceconfusionanddiffusionwere first proposed by Shan-
non [4] in 1949, they have been extensively used to evaluate



the security of cryptographic systems. Confusion is basically
defined as the concealment of the relation between the secret
key and the cipher text. On the other hand, diffusion is
regarded as the complexity of the relationship between the
plain text and the cipher text. Although they were initially
defined for encryption systems, they have also become the
primary engineering design principle for cryptographic hash
functions.

A. Confusion/Diffusion for Cryptographic Hash Functions

In the context of hashing,confusion is the complexity of
the relation between the key and the hash value.In other
words for a hash function having good confusion property,
given X, K and H = h(X,K), it is highly impractical to
reveal the relation betweenH = h(X, K) andH ′ = h(X, K ′)
where K and K ′ differ by even only a single bit. A hash
function with good confusion capability generates completely
different (statistically independent) hash values when the key
is changed. Ideally, when the key is changed, each bit of the
hash value either flips or remains same with probability of
1
2 . Hence when the key is changed even by a single bit, one
should expect to observe that approximately half of the hash
bits are flipped and the locations of the these flipped bits are
also randomly distributed.

For hash functions which have relatively weak confusion
capabilities, once can expect similar hash values for the same
input when the key is slightly changed. More formally:

NHD{h(X, K), h(X, K ′)} < ε

while, |K −K ′| < δ

where NHD{} is the Normalized Hamming Distance, and
ε , δ are some small numbers. That is to say, neighboring
keys in the key-space produce very similar hash values, which
makes the key-space virtually narrower and the hash function
susceptible to brute-force (exhaustive search) type of attacks.

For an encryption function,diffusion is defined as the
complexity of the relation between plain-text and cipher-text.
However, for hash functions it can be altered to representthe
statistically irrelevance between the input bits and the hash
value. More formally, a hash function is said to have strong
diffusion capability, if givenX, K,X ′ and H = h(X,K),
H ′ = h(X ′,K), it is highly impractical to reveal the relation
betweenH andH ′ whereX andX ′ may differ by even only a
single bit. For cryptographic hash functions, strong diffusion
capability can be achieved by making each bit of the input
affect each bit of the hash value. Thereby, any single bit change
in the input would cause a drastic change in the hash value.
This is often referred as theavalanche effectin the literature.
Ideally one should expect approximately half of the hash bits
having random locations are flipped when the input is changed
even by a single bit. This is because the change in the input
affects each bit of the hash value in the sense that each hash bit
either flips or remains same with probability of1

2 . In the case
where the hash function lacks strong diffusion capabilities, an
adversary could create collisions very easily since he could

predict the response of the hash function to alterations in the
input.

B. Modified Confusion/Diffusion for Robust Hash Functions

Since the definition of robust hash functions is similar but
not exactly the same as the cryptographic hash functions,
a slightly modified confusion/diffusion concept is required.
In robust hash functions, unlike the bitwise difference for
cryptographic hash functions, the multimedia input is regarded
as changed only if the underlying perceptual information
is changed. For instance, similar or even the same hash
values are expected after applying a robust hash function to
an uncompressed image and its slightly compressed version
whose bit representations are entirely different but the percep-
tual information is the same. Therefore one should expect a
totally different hash only when the perceptual information is
changed.

As mentioned in Section II-A, the difference of the input is
related to diffusion only. Confusion is involved with the secret
key, which has exactly the same definition as in the context of
cryptographic hash functions. Therefore when a robust hash
function is in question, only the definition of diffusion has to
be modified. For a robust hash function we define diffusion
to be the irrelevance or complex relationship between the
perceptual information of the input and the hash value.

In order to identify perceptual change, the input can be
regarded as a collection of perceptual units and the cor-
responding perceptual units are compared when comparing
two different inputs. Particularly in the case of robust hash
functions for images, if we neglect the geometrical alterations
such as scaling and rotation, a perceptual unit can be defined
as a small image block whose size is carefully decided
to be sure that no significant perceptual change could take
place without changing at least one perceptual unit. Since
any change in one of the perceptual units could potentially
alter the whole semantic information, any two images should
be declared as perceptually same only if all corresponding
pairs of the perceptual units are decided to be the same. For
instance in a car image, if the digit ’3’ is transformed into
the digit ’8’ on the plate, probably only a single perceptual
unit will be different where the semantic information will be
completely changed and the new image should be regarded as a
different image. Therefore, any two same sized images can be
perceptually compared by means of comparing corresponding
perceptual units.

III. PERCEPTUALUNIT AND PERCEPTUALDIFFERENCE

FOR IMAGES

As mentioned in Section II-B, tiny perceptual differences
could cause drastic semantic changes. Therefore perceptual
similarity of two images should be analyzed block by block.
If the perceptual difference is measured by comparing the
images entirely at once, perceptually small but semantically
significant changes probably will not be noticed by the com-
parison algorithm since significant portions of the images are
perceptually identical. However, with carefully determination



(a) Compressed Image with JPEG-30 (b) Forged and Slightly Compressed Image
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(c) Perceptual Difference Of Compressed Image
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(d) Perceptual Difference Of Forged Image

Fig. 1. Illustration of perceptual comparison. An SSIM value for each perceptual unit pair is calculated. In 1(c) and 1(d) SSIM values between corresponding
perceptual units of original image and modified images are plotted.

of the block size, it can be guaranteed that any perceptual
difference will affect the significant portion of at least one
block which will be declared as perceptually different. Hence,
perceptual difference between two same sized images can be
determined by the number of perceptual unit pairs which have
the same location on two images but have been identified as
different.

Perceptual units have to be overlapping blocks in order to
eliminate the boundary problems and to ensure that small
perceptual differences can be fully encapsulated within a
single block. Otherwise, there would be a possibility that tiny
perceptual differences located around the block boundaries
might be shared by neighboring blocks causing block by block
comparison algorithm to ignore those partial dissimilarities
even if the whole difference is indeed much larger.

Deciding whether two perceptual units are similar or dif-
ferent can be done with the help of perceptual image quality
measurement algorithms. In this work, we adopt Structural

Similarity (SSIM) Index of Wanget al. [5], where a distance
value is produced regarding human visual system (HVS).
In SSIM, the perceptual similarity is calculated from cross
correlations of luminance and contrast measurements which
are obtained from statistical models. SSIM is bounded by 1
indicating perceptually identical blocks and goes to 0 as the
perceptual information differs.

In the experiments as the perceptual units of 512x512 im-
ages, we choose 16x16 blocks which are overlapped with ratio
of 1

2 in both horizontal and vertical directions. We observe that
16x16 blocks are large enough to contain significant perceptual
information and small enough to be affected by even tiny
perceptual changes. In Figure 1 an illustration of perceptual
difference measurement is presented. In order to observe the
perceptual difference, two different modifications were applied
on the original ’boat’ image. First it is compressed by JPEG
to a quality factor of 30. Although some visual distortions
occur, it is expected that no perceptual difference would be
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Fig. 2. Evaluation of confusion capabilities of robust hash functions.

observed. Then the last few letters of the script on the back
of the boat were changed. Also the forged image was slightly
compressed in order to observe the interference of forgery and
compression. The compressed and forged images are shown
at Figure 1(a) and Figure 1(b). The perceptual units of each
figure were extracted and compared with the corresponding
perceptual unit of the original image via SSIM. As expected
the perceptual units of the compressed image did not differ
too much from those of original image as can be seen in
Figure 1(c). However, it is observed in Figure 1(d) that the
SSIM value drastically drops at the perceptual units where the
forgery takes place.

From the above example and the others that are not shown
here we can chose a SSIM threshold around 0.8. That is, SSIM
values below this threshold indicate perceptual difference.
After deciding the threshold value for the example in Figure 1
we can say that there are no different perceptual units between
the original and the compressed image whereas 9 out of 3969
perceptual units are different between the original and the
forged image.

IV. EVALUATING MODIFIED CONFUSION/DIFFUSION

In this section, we evaluate theconfusion and diffusion
capabilities of three well-known robust image hash functions.
The first one is Fridrich’s well known visual hash method
[6] in which, 64x64 image blocks are projected onto pseudo-
randomly generated smooth basis functions. The final hash
value is a 1 bit quantization of these projection values where
the threshold is determined carefully so that the number of
”1”s and the number of ”0”s are approximately equal. In
our experiments we employed 50 random bases onto which
each 64x64 image block was projected. Hence, at the end we
generated 3200 bits of hash for each 512x512 image.

The second robust image hash function we investigated was
Mihcak’s robust hash [7], where binary representations of the
images are produced from iterative geometric filters. These
filters are designed to enhance the geometrically significant
components by means of region growing. In Mihcak’s method,

first an iterative geometric filter is applied to a set of pseudo-
randomly selected regions (can be overlapping) of the coarse
subband of the image and then the bit representations of
each region is pseudo-randomly permuted and concatenated
to produce the final hash. In our experiments we pseudo-
randomly selected 100 rectangles from each 512x512 image.

Finally we investigated the robust hash of Venkatesanet al.
[8], where the hash is calculated from the statistics of wavelet
coefficients. In this method, first the subbands are pseudo-
randomly tiled into small subsections, and the mean and
variance of coarse subband and detail subbands respectively
are collected. Then a random quantization is applied to those
statistics in order to obtain the final hash.

A. Evaluation of Confusion

As we previously mentioned in Section II,confusion is
related to the relation between the key and the hash value.
Basically the hash function with strong confusion capability
is expected to produce a statistically irrelevant hash value
when the key value is changed even by a single bit. In
order to investigate the confusion capabilities of robust hash
functions, one should observe the change in the hash value
along with the slightly changing key. The normalized hamming
distance between the initial hash value and the hash value
obtained by slightly changing the key is expected to be around
0.5, which roughly means the hash values are irrelevant.
Results of such experiment is presented in Figure 2, where
normalized hamming distances are recorded as the key values
are slightly increased. It is observed that all three robust image
hash functions achieve their maximum normalized hamming
distance value,which is around 0.5, even right after a single
bit is changed. Since the normalized hamming distance of 0.5
roughly represents statistical irrelevance, we can conclude that
both hash functions have sufficient confusion capabilities.

B. Evaluation of Diffusion

Since the notion of diffusion is based on the relationship
between the input and the hash value, it can be evaluated
by observing changes in the hash value as the input is being
slightly changed. For cryptographical hash functions the input
could be changed bit by bit, however in the case of robust
hashing, slightly changing the input means changing the per-
ceptual units one at a time. In order to change a perceptual unit
of an image, we replace that unit with the corresponding unit
of another image. Hence, as the number of changed perceptual
units increased, the original image begins to look like another
photographic image rather than a meaningless visual data.
Since the robust image hash functions may use a relationship
between neighboring pixels, we evaluate diffusion capabilities
in two different schemes. In the first scheme the replaced
perceptual units are selected randomly of which an example
can be seen in Figure 3(a). An example of the second scheme
is shown in Figure 3(b) where the replaced perceptual units
are localized to a specific neighborhood. But in both schemes
as the number of replaced perceptual units are increased, the
Lena image begins to look like the Baboon image.



(a) Image obtained from Distributed Substitution. 689 of
3969 perceptual units are found to be different from the
original Lena image

(b) Image obtained from Local Substitution. 262 of
3969 perceptual units are found to be different from the
original Lena image
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(c) Normalized Hamming Distances of Hash values under
Distributed Substitution
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(d) Normalized Hamming Distances of Hash values under Local
Substitution

Fig. 3. Evaluation of diffusion capabilities of robust hash functions.

As mentioned in Section II-B and observed in Figure 4,
even a change of a single perceptual unit could be a very
significant semantic deceit. Therefore a reliable robust hash
function should produce a statistically irrelevant hash value
whenever the input is changed even by a single perceptual unit.
Unfortunately, all of the hash functions reach the statistically
irrelevance which corresponds to the normalized hamming
distance of 0.5, only when all of the perceptual units are
changed regardless of the replacement scheme. Hence we can
conclude that all three hash functions have very weak diffusion
capabilities under both localized and random replacement
schemes.

Slowly increasing hamming distance for these robust hash
functions is not surprising because they all focus on the
significant perceptual information over the entire image and
naturally cannot notice the tiny but dangerous modifications.
Therefore, they cannot be used to prove the authenticity of

images.

V. RESPONSE OFROBUST HASH FUNCTIONS AGAINST

FORGERIES

The major problem of the hash functions lacking strong
diffusion capabilities is that an adversary can easily generate
collisions by carefully forging the input. Moreover in the
context of robust hashing it is much easier to generate colli-
sions because unlike cryptographic hash functions, robust hash
functions are designed to tolerate some small modifications in
order to be robust. Therefore, it is very likely that a careful
forgery causing tiny perceptual change but very significant
semantic change will not be noticed by robust hash functions.
Two examples of such modifications are shown in Figure
4, where the script on the ”Boat” and the right eye of the
”Lena” are modified. In either of forged images no more than
4 perceptual units has been changed where there are total of



Fig. 4. Original (left) and forged (right) images.

3969 perceptual units in each image. Regarding the diffusion
evaluation results summarized in Figure 3, these forgeries
are expected to be unnoticed by the robust hash functions.
Unfortunately this kind of behavior immediately suggests that,
using robust hash functions having weak diffusion capability in
authentication applications is very dangerous. As can be seen
in Table I where the normalized hamming distances between
the hash of original images and the hashes of forged and
compressed images are presented, if any of these three robust
hash functions were used in an authentication application,
the forged images would be declared as more authentic than
the JPEG-40 compressed images which have no different
perceptual unit from the original images.

TABLE I

FORGERYVS. COMPRESSION

Image Fridrich Hash Mihcak Hash Venk. Hash

Lena Forged 0.007 0.016 0.011
Lena Compr. 0.008 0.019 0.036
Boat Forged 0.004 0.014 0.021
Boat Compr. 0.013 0.021 0.016

VI. CONCLUSION

We have presented a new definition of confusion/diffusion
that can be used to measure the security of robust hash
functions. Our definition is based on the notion of perceptual
difference. We have evaluated the confusion/diffusion capa-
bilities of three well-known robust image hash function and
found them to be significantly lacking. We observed that all
of the three robust hashing methods have excellent confusion
capabilities. That is to say, if the secret key is changed even
by a single bit, the resulting hash value will be completely
different. This property makes the hash function more robust
against exhaustive search for the secret key. However, all three
robust hash functions we investigated do not have satisfactory

diffusion capabilities meaning that the hash value remains
similar as the perceptual information is slowly changed. Since
an adversary can change the semantic information drastically
even by changing few perceptual units, this weak diffusion
property is very undesirable in authentication applications. In
fact, we have created such perceptual changes and shown that
all of the hash functions regard semantically changed images
more authentic then their compressed versions.
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