Efficient Detection of Delay-Constrained Relay Nodes

Baris Coskun
Polytechnic University, ECE Dept.
Six Metrotech Center Brooklyn, NY
baris @isis.poly.edu

Abstract

Relay nodes are a potential threat to networks since
they are used in many malicious situations like stepping
stone attacks, botnet communication, peer-to-peer stream-
ing etc. Quick and accurate detection of relay nodes in a
network can significantly improve security policy enforce-
ment. There has been significant work done and novel solu-
tions proposed for the problem of identifying relay flows ac-
tive within a node in the network. However, these solutions
require quadratic number of comparisons in the number of
flows. In this paper, a related problem of identifying relay
nodes is investigated where a relay node is defined as a node
in the network that has an active relay flow. The problem is
formulated as a variance estimation problem and a statis-
tical approach is proposed for the solution. The proposed
solution requires linear time and space in the number of
flows and therefore can be employed in large scale imple-
mentations. It can be used on its own to identify relay nodes
or as a first step in a scalable relay flow detection solution
that performs known quadratic time analysis techniques for
relay flow detection only on nodes that have been detected
as relay nodes. Experimental results show that the proposed
scheme is able to detect relay nodes even in the presence of
intentional inter-packet delays and chaff packets introduced
by adversaries in order to defeat timing based detection al-
gorithms.

1 Introduction

In a typical network, there can be various situations
where a node receives data from another node and forwards
it to some others. Such nodes are often called “relay nodes”.
Relay nodes can be employed for many different purposes
which can be either legitimate or malicious. Routers and
switches are clearly examples of usually legitimate relay
nodes. But there are other more ambiguous situations. For
instance, an enterprise may be running a legitimate peer-to-
peer video streaming application for the benefit of its em-
ployees. On the other hand an employee could be violat-

Nasir Memon
Polytechnic University, CIS Dept.
Six Metrotech Center Brooklyn, NY
memon @poly.edu

ing company policy by running a peer-to-peer application
to watch live television on the desktop. Similarly, a sys-
tem administrator may be connected from home to a server
and logs in from that server using ssh to one of the internal
machines in order to check its status. This would be an ex-
ample of a legitimate stepping stone connection. Stepping
stones, however, are commonly used by hackers to make
attack traceback difficult. In general, regardless of the orig-
inal intention, relay nodes are a potential threat to networks
since they are used in many malicious situations like step-
ping stone attacks, botnet communication, illegal peer-to-
peer file sharing etc. Hence, quick and accurate detection
of relay nodes in a network can significantly improve secu-
rity policy enforcement.

Relay nodes can be divided into two main categories:

1) Store & Forward Relay Nodes: These type of relay
nodes often store data before forwarding. Peer to peer file
sharing and email relaying are some examples of store and
forward relays as email relays forward received emails after
few minutes and peer to peer file sharing applications don’t
forward data until another user make a request.

2) Delay-Constrained Relays Nodes: These type of re-
lay nodes forward the received data within a maximum tol-
erable delay constraint, which is inherent in the underly-
ing application. Delay-constrained relaying can be done by
applications which are either interactive or machine driven.
For instance, stepping stones and IM message routing nodes
are some examples of delay-Constrained relays with inter-
active sessions. On the other hand, peer to peer live broad-
cast and Skype super-nodes are examples of machine-driven
delay-constrained relays.

Detection of store and forward type of relays is gener-
ally done by identifying protocol features. Usually a tar-
get protocol is selected and its distinctive characteristics are
identified. Subsequently, a node that exhibits such charac-
teristics is declared as a relay node. Some such protocol
features used by researchers include connections to known
ports, payload signatures, concurrent use of both UDP and
TCP etc. This work will mainly focus on delay-constrained
relays. Interested readers can find further details on store

and forward relay node detection schemes in [3,5-8].

To the best of our knowledge, there is no prior work
that focusses on the delay-constrained relay node detec-
tion problem. However, there has been much work on the
closely related delay-constrained relay flow detection prob-
lem [1,2,9,12,13]. Relay flow detection is harder than relay
node detection as detection of relay flows implies identifica-
tion of relay nodes as well. The basic detection methodol-
ogy in the proposed delay-constrained relay flow detection
schemes is to search for network flow pairs which exhibit
strong mutual correlation. This correlation is determined
based on various attributes of the flow, including packet
content (payload), packet arrival times, packet lengths etc.
Regardless of how the correlation is determined, all these
methods compare each incoming flow to each outgoing one,
usually on a node by node basis. Therefore they require
quadratic time for each node, which may be prohibitive for
medium to large scale networks with tens of thousands of
nodes and thousands of active connections in many nodes.

For many scenarios, however, instead of identifying re-
lay flows, identifying relay nodes could be sufficient to take
appropriate action. In addition, a lightweight and scalable
solution to the problem of delay-constrained relay node de-
tection can serve as a first step in a scalable relay flow de-
tection solution that performs one of the known quadratic
time analysis techniques for relay flow detection only on
nodes that have been determined to be relay nodes. This
strategy brings significant computational efficiency to exist-
ing schemes since the quadratic flow detection algorithm is
now applied to a few selected nodes rather than every node
in the network. Hence, in this work we focus on the prob-
lem of delay-constrained relay node detection. This slightly
relaxed problem is reformulated as a variance estimation
problem and a statistical approach employed to solve the
problem in linear time which makes it viable to incorporate
in large scale networks. Also the proposed technique is ro-
bust, to some extent, against adversarial manipulations that
change the time structure of the flows such as intentional
delays or chaff packets.

1.1 Related Work

Research on delay constrained relay detection has mostly
focused on stepping stones due to their obvious potential
malicious intention. Perhaps the first such technique was
proposed by Staniford and Heberlein [9]. They proposed
a content correlation based scheme where flow pairs are
compared in terms of thumb-prints of their content. How-
ever, content based schemes have limited applicability since
flows are usually encrypted and their contents are inacces-
sible. This fact motivated researchers to focus on layer 3
information which mostly consists of originating and des-
tination IP addresses, packet arrival times etc. In the first
work that incorporates layer 3 information [13], Zhang and
Paxson detect stepping stones by correlating flows in terms

of their ON and OFF periods. The assumption is that cor-
related flows switch from OFF state to ON state at simi-
lar times. In [12], Yoda and Etoh propose a similar timing
based algorithm where correlation is defined over sequence
number vs. time curves of the flows. Another timing based
algorithm is proposed by He and Tong in [4], where authors
formulate the flow correlation problem as a nonparametric
hypothesis testing. Other than stepping stones, in [10], Suh
et. al. proposed a similar timing based technique for detect-
ing Skype related relay traffic.

Timing based methods usually fall short when an at-
tacker perturbs the time structure of the relaying flows by
means of introducing artificial delays before relaying the
received packet or by adding chaff packets into the stream.
In [2], Donoho et. al. shows that if there is a maximum
tolerable delay constraint, instead of using raw timing in-
formation, applying wavelet decomposition and analyzing
packet timings in lower resolutions will make the effect of
the adversarial changes in time structure insignificant. Sim-
ilarly under a maximum tolerable delay constraint, Blum
et. al. present confidence bounds on the stepping stone
detection problem in [1]. As a completely different ap-
proach, in [11], Wang and Reeves propose a watermarking
based approach where selected packet timings are slightly
adjusted on all incoming flows. In order to identify a relay-
ing flow, a watermark detection procedure is applied to all
outgoing flows.

As we have pointed out before, flow correlation based
techniques solve the problem in quadratic time. They need
to compare each incoming flow to each outgoing flow.
Therefore it is not easy to employ these methods in large
networks. One could adopt filtering techniques to alleviate
this problem to some extent. For instance, in [13] specific
flow pairs are filtered out based on packet size, inconsistent
source and destination ports, inconsistent packet direction
and timing etc. However, discarding information usually
brings a potential threat to detection performance since the
real relaying flows could be filtered out or adversaries could
manipulate flow characteristics to get filtered out. There-
fore, a more scalable solution for relay detection problem
would be of potential value in many situations.

2 Detecting Relay Nodes in Linear Time

Before formally defining the problem, we make the fol-
lowing definitions:
-Flow: A flow is the collection of packets which share the
common the five-tuple of source IP, source port, destination
IP, destination port and layer 3 protocol type (UDP or TCP).
-Incoming/Outgoing Flows: For a particular node, if the
destination IP of a flow and the IP of that node are the same,
then that flow is considered as an incoming flow. Con-
versely, if the source IP of the flow is equal to the IP of
that node, then the flow is regarded as an outgoing flow.

-Time Slot: We consider time axis as a sequence of equal
length time intervals which are called time slots.

-Active Flow: If a flow has at least one packet transmitted
within a given time slot, then that flow is regarded as being
active within that particular time slot.

2.1 Basic Idea

The basic idea of the proposed technique relies on the
fact that the incoming and outgoing components of relay
flow have to transmit at least some of the packets (non chaff
packets) at similar times (within the maximum tolerable de-
lay duration). That is to say, if the time axis is considered as
a sequence of time slots, the corresponding incoming and
outgoing flows of the relay would be simultaneously active
within some of the time slots. This observation is illustrated
in Figure 1, where the incoming flow R and outgoing flow
F' are acting as a relaying flow pair. It is observed that, in
order to forward the received information through flow R,
flow F'is also active in the same time slots as flow R.

In order to capture this correlation of relaying flows,
we assign to each flow a random number drawn from a
zero-mean known distribution. Then, for each time slot,
the random numbers assigned to active incoming flows are
summed and multiplied to the sum of random numbers as-
signed to the active outgoing flows. Finally the results of
each time slot are added together and an overall sum value
is obtained. Calculation of this overall sum (.5) is summa-
rized below for the flows shown in Figure 1. Note that the
letters A, B, C etc. represent the assigned random numbers
to the corresponding flows shown Figure 1.

S =(R+AF+B)+CD+B)+---
-+ (A+R)F+AD+ RF
=RF+RB+AF+AB+CD+---
-+ CB+ AF + RF + AD + RF
=3xRF+ (RB+ AF + AB+ - --
-+ CD+CB+ AF + AD)
= 3 X RF + sum(Random Numbers)

It is observed above that, thanks to distributive prop-
erty of multiplication over addition, this calculation is ef-
fectively equivalent to assigning a random number to each
active flow pair and then summing them up. Hence, if there
were no correlated relaying flows, “S” would be the sum of
random numbers coming from a zero-mean known distribu-
tion. Consequently “S” itself would be a random number
coming from another zero-mean known distribution. How-
ever, when there’s a relay activity and the random number
assigned to the relaying flow pair appears multiple times in
the summation and somewhat can be considered as a con-
stant term, which changes the governing distribution of “S”.
Consequently one can classify a node as being a relay or not
based on a simple statistical test applied on “S”. The math-
ematical details of this scheme are presented in Section 2.2.

| | | | |
Incoming |®A | c | A@ A | @
S CITENGHENG
| | | | |

g >
Timeslot

Figure 1. Active flows in a short period of
time, where the outgoing flow 7 relays infor-
mation coming from the incoming flow R.

At this point, an acute reader would have observed that
request-response based protocols (i.e. TCP) pose a prob-
lem against the proposed technique. This is because flows
which carry requests and corresponding flows which carry
responses are often active within the same time slots. Con-
sequently, network nodes which use such protocols would
be automatically declared as relay nodes by the scheme we
have described above. But there is a simple fix to this prob-
lem. Essentially, only one flow of such flow pairs should
contribute to the summation process for each time slot and
the other flow should simply be ignored. This solution can
easily be implemented by checking if a random number has
already been accumulated for a flow which has the exact re-
verse direction (i.e source and destination IP addresses and
ports are swapped) of a given flow. If the answer is yes, that
flow is simply ignored since its counterpart flow has already
been taken into account.

2.2 Problem Formulation and Solution

Our goal is to differentiate between network traffic data
which contains relay activity and that which does not. The
basic difference between these two situations is the number
of time slots in which the same flow pair is simultaneously
active. That is because, although uncorrelated flows may
share few time slots but it is very unlikely that the number
of such time slots is high. On the other hand, for a flow
pair relaying information with a maximum tolerable delay
constraint, if one flow is active for a given time slot, with
high probability the other flow is active in order to relay
information before the time constraint elapses. We denote
the number of time slots shared by the same flow pair as 3,
which we will show very closely related to the variance of
the sum S ((0%)) introduced in Section 2.1. Therefore one
can distinguish relay nodes from the corresponding (0%) .

In order to state the relationship between [and ag,
we define I; and O; for a given node in the network as
the incoming flows the outgoing flows respectively, where
1=1,2,...,mand 7 = 1,2,...,n. For each incoming flow
and each outgoing flow, a random number is generated and
assigned to the corresponding flow. Let RI; and RO; de-
note the random numbers assigned to the incoming flow I;
and the outgoing flow O; respectively. Here RI; and RO;
are assigned such that they are independently drawn from
the probability mass function P(n), which is:

%, if n=+y
P(n)=4 3, ifn=-y , whereyeR (1)
0 ,elsewhere

The reason P(n) is chosen as a bipolar symmetric PMF
is that our detection algorithm requires the distribution of
RI; x ROj to be bipolar symmetric. This distribution turns
out to be bipolar symmetric as long as P(n) itself is chosen
as bipolar symmetric.

Meanwhile, let %t and j’t be the indices of the active in-
coming flows and the active outgoing flows respectively for
a given time slot ¢. Then for each time slot t, the correspond-
ing random numbers for active incoming flows within ¢ are
summed and multiplied to the sum of the random numbers
assigned to active outgoing flows. This step is repeated for
each time slot and result of each step is accumulated. More
formally, the following summation S is calculated for time
slotst =1,2,3,...,T":

> RI; x Y RO;)

Li€i J€J

] =

S:

H
Il

1

We can rewrite Equation (2) from distributive property as:
T

S = > > " RI x RO, 3)

1 _ieit jejt

-
Il

Notice that S is effectively the summation of a new
set of random numbers which are assigned to each active
incoming-outgoing flow pair for each time slot. Therefore,
Equation (3) can be written as:

A
S=> M, 4)
a=1

where A is the number of terms such that “A =
St Yici, Sje;, 17 and “M, = (RI; x RO;)”, which
are random numbers drawn from probability mass function
P(n):

Pny={ 1 n=-? , whereye® (5
0 ,elsewhere

Rigorously speaking, the M, values may not be indepen-
dent since a single RI; or a single RO; may, and probably
will, contribute to multiple M, values. However, for prac-
tical purposes M, values are considered as i.i.d. random
variables with probability mass function P(n) As a matter
of fact, this is not a very crude assumption'.

'Suppose My = RI; x ROj and M2 = RI; X ROy,. Since P(n)
is bipolar symmetric, knowing RI; doesn’t give any information about
RI; x RO;. In other words P(M7 | M2) = P(M3) and therefore M
and M> are independent. However, suppose the following values were
also given or known: M3 = Rl X ROj and My = RI, X ROg.

Assuming independent M, values, if there is no corre-
lation between any pair of incoming and outgoing flows, in
other words if there is no relaying flow pairs, then Equa-
tion (4) holds and S will simply be interpreted as the sum
of independent random variables. On the other hand if y'"
outgoing flow (RO,,) relays the packets from zt" incoming
flow (RI;), both RI, and RO, will be active in a number
of time slots (), then the sum in Equation (4) can be written
as:

A—p

S=B(RI, x ROy)+ Y M,, where3>0 (6)

a=1

More generally if there are F' such incoming-outgoing
flow pairs, namely Iy, and Oy, , where f; and f, indicate
incoming and outgoing flow indices of f!” pair respectively
(f = 1,2,..F), and each of these pairs are simultaneously
active within 3, time slots, then the summation .S' can be
written as:

F A-8
S=Y BMp+ Y M, (7)
f=1 a=1

where M; = (RI;, x ROy,), 8 = Y.j_, B and 3 >
0 for all f. Notice that Equation (7) reduces to Equation
(6) when F' = 1 indicating a single relaying input-output
flow pair and further reduces to Equation (4) when F' = 0
indicating no relay.

The value S is a random variable in both Equations (4)
and (7) and variance of S (0’%«) can be used to identify relay
activity. In order to show this, let 0% Relay Tepresents the
variance of S where there’s no relay activity. We can write
J%ino Relay = +*A from Equation (4), since M,, values are
ii.d random variables drawn from probability distribution
given in Equation(5) whose variance is v%. On the other
hand, 0% ;i Relay> Which represents the variance of S un-
der relay traffic, can be similarly calculated from Equation
(7) as:

0% withRelay = Z§:1(ﬁf)274 + (A=)
= (Zioi(8)% - B) +4%4
=" (2180 = B) + 0% noretay
(®)
Since 3 = Z?:l Bt “U?q,mmRelay > Ug,noRelay” is sat-
isfied so long as 3", (8f)% > Y__; By, which holds for

Then, by using M3 and M4 one could determine the polarity relation of
ROj and ROy, such that, if M3 = M, then RO; = ROy, as well and
if M3 # My then RO; # ROy, This information could later be used to
determine M7 such that if RO; = ROy, then M1 = M> and if RO; #
ROy, then M1 = —Ma>. So, Mj is not independent from the collection
(Ma, M3, My). However, in order this to happen, flow I; has to be active
in the same time slot with O; and in another or the same time slot with Oy,.
Also I, should be active in the same time slot with Oj and in another or
the same time slot with Of. And all this has to happen in a short period of
time before “A” terms are collected. The probability of such event is not
very high and therefore independent M, assumption is quite realistic.

B¢ > 1. Therefore one can identify relay nodes by looking
at 0% values as long as the relay flows are simultaneously
active for more than one time slot. This is a purely theoretic
constraint and in practice a relay has to be active for suffi-
ciently enough number of time slots in order to be detected.
Fortunately, most of the relay scenarios have to satisfy this
constraint in order to serve their purpose. Another interest-
ing observation is that the above constraint is independent
of . Therefore, the system performance doesn’t change
for different values of . Therefore, in the experiments this
value is simply setto v = 1.

In practice, estimating o% is the first task to be per-
formed. Then the system can declare a node as being a relay
if the estimated 0% is sufficiently larger than the anticipated
0% if the node is not relaying at all. For this purpose, the
system computes a number of .S values simultaneously but
independently in order to estimate the 0% value.

2.3 Detection Algorithm and the Analysis

In this section we first discuss the proposed algorithms
which compute S values in order to estimate 0% and conse-
quently performs relay detection. Following that, space and
time requirements of these algorithms are discusses.

The S values are calculated by the algorithm,
Calculate_S listed below, which basically performs the op-
eration defined in Equation (2). The algorithm takes the
parameter A, which is introduced in Equation (4) and indi-
cates the number of terms added together. Here I and O in-
dicate the list of incoming and outgoing flows respectively.
Also the function “Reverse()” returns the flow identification
which has the complete reverse direction of a given flow.
The algorithm then checks if this reverse flow has been in-
cluded in the summation previously in order to deal with
the problem of request-response based protocols mentioned
earlier in Section 2.1.

Notice that Calculate_S computes a single S value.
In order to accurately estimate 0%, a number of S val-
ues have to be collected. This can be done by executing
multiple C'alculate_S instances simultaneously. The algo-
rithm, Estimate,ag listed below, implements the estima-
tion procedure by employing the algorithm Calculate_S.
The input parameter 7" indicates the number of simultane-
ous Calculate_S executions.

It should be noted that Estimate_o% outputs a single
0% value whenever A terms are collected. The time elapsed
until A terms are collected totally depends on the input pa-
rameters and the characteristics of the underlying network
traffic. In a typical scenario the parameters can be chosen
so that the elapsed time to collect A terms is around few
seconds. Therefore, each estimated a% value would corre-
spond to a few seconds of network traffic. For continuous
operation, Estimate_c% should be executed repeatedly.

The final decision is given based on the difference be-
tween estimated 0% values and the anticipated 0% value

when the node is not relaying at all. This value can be writ-
ten more formally as:

U= 0'?9 —~1A)
Algorithm 1 Calculate S(A, I = {IL,.,I,},0 =
{01.,0,})
S0

noO fTerms < 0
timeSlot «— currentTimeSlot
while noO fTerms < A do
incomingSum «— 0
actInFl — 0
for all active incoming flow I; within timeSlot do
if RO, for Reverse(l;) is already used timeSlot then

continue; //In order to avoid request-response problem ig-
nore this flow
end if

if RI; is not assigned to I; then
assign RI; randomly [as in Eq(1)]
end if
incomingSum «— incomingSum + RI;
actInFl — actInFl+ 1
end for
outgoingSum «— 0
actOutFl «— 0
for all active incoming flow O; within timeSlot do
if RI; for Reverse(Oj) is already used in timeSlot then

continue; //In order to avoid request-response problem ig-
nore this flow
end if

if RO; is not assigned to O; then
assign RO; randomly [as in Eq(1)]
end if
outgoingSum «— outgoingSum + RO;
actOutFl «— actOutFl + 1
end for
noO fTerms «— noO fTerms + actInFl X actOutFl
timeSlot «— nextTimeSlot
S — S + incomingSum X outgoingSum
end while
output S

In the experiments, a recent few W values are incorpo-
rated in the decision process such that if the sum of “d”
most recently calculated ¥ values exceeds a threshold “th”
then the corresponding host is declared as performing relay
activity within the corresponding time slice.

Before we begin to analyze the algorithm, it should be
emphasized that the parameters A and T are constant val-
ues which are in the order of few hundreds and they do not
vary with the input size. As for the investigation of time re-
quirements, the algorithm Calculate_S loops over the ac-
tive incoming flows and active outgoing flows separately.
It repeats these loops a constant number of times until A
terms are collected for summation. Therefore Calculates is
O(m+n) time algorithm where m and n are the number of
incoming and outgoing flows respectively of the node being
analyzed. Practically speaking, the algorithm may actually
loop fewer times than m 4+ n since only a fraction of incom-
ing and outgoing flows are active for a given time slot.

For the second algorithm, Estimate,a?9 calls

Calculate_S exactly T times which is indeed a con-
stant parameter. Therefore, Estimate_o% too runs in
O(m + n) time. However, the time requirements of the
whole system actually depends on how many times the
algorithm Estimate_c% is executed. But again for a given
fixed time interval, Estimate_c? is called repeatedly for a
constant number of times. Therefore for a given fixed time
interval, which is typically the duration of a typical relay
activity, the decision is given in linear time.

The space required by the algorithm, on the other hand,
is mainly the table which keeps assigned random values of
the incoming and outgoing flows. Hence, it can be con-
cluded that the algorithm requires linear space as well.

Algorithm 2 Estimate 0% (A, T, I, 0)

0'% —0
fori =1to T do

S; < Calculate_S(A, I, 0)

N2

7t op + 5
end for
output o%

3 Experiments and Results

In order to verify the practical efficacy of the proposed
scheme, the algorithms discussed in Section 2.3 were imple-
mented and executed for real network traffic. This section
presents the experimental setup and their results in order to
demonstrate the performance of the proposed scheme.

3.1 Experimental Setup

The ultimate goal of the proposed scheme is to iden-
tify network nodes that perform relay activity, or in other
words, “relay nodes”. Aside from relay traffic, in almost
every case, relay nodes also receive and transmit legitimate
non-relay traffic. Therefore, in our experiments, traffic for
relay nodes was constructed such that pure relay traffic is
blended into non-relay host traffic. For the non-relay traffic,
two different types of traffic data were captured from real
network. The first type was the traffic of our university’s
web server which basically consists of http flows. The sec-
ond type was captured from a mail server, which provides
mail client connections and ssh/telnet interactive sessions.
Both traffic data were captured on a typical day for a few
hours. The Web server’s traffic had average packet rate of
70 packets/second and average bit rate of 416 kbps whereas
mail server’s traffic had higher average packer rate of 76
packets/second but lower average bit rate of 257 kbps.

The relay traffic on the other hand was artificially gen-
erated where the packet inter-arrival times were determined
by the following Gaussian mixture model:

P(Z) = pN(MShOTt’ Ughort)—i_(l_p)N(MlongaU?ong) (10)

where, N'(i1, %) indicates normal distribution with mean y

and variance o2.

Packet Direction
o =
N =

30 35 40 45 50
Time (seconds)

Figure 2. A typical relay traffic generated by
model in Equation (10).

This model generates bursty traffic such that the pack-
ets are mostly sent back to back without waiting too much
(with probability p) and a pause period occurs once in a
while (with probability 1 — p). The reason this model was
used is that bursty traffic captures the behavior of most ap-
plications more accurately. Notice that this model generates
only the incoming portion of the relay traffic. Each received
packet has to be forwarded in order to obtain a complete re-
lay activity. Rather than forwarding packets immediately,
a certain amount of delay was introduced for each packet
in order to represent the packet processing time and/or in-
tentional adversarial delays. For each packet, delay val-
ues were chosen randomly from a normal distribution with
Hdelay and U?lelay’ About 30 second portion of an exam-
ple relay traffic generated by this model is given in Figure
2, which shows the incoming packets, inter-arrival times,
and introduced delay between incoming and outgoing pack-
ets. The parameters used for the relay traffic in this figure
are p = 0.8, pshort+ = 100 milliseconds, osport = 10,
Hiong = 3000 milliseconds and oy0,, = 500. The intro-
duced delay parameters are figeiqy = 400 milliseconds and
Odelay = 90. Also in this figure, positive bars indicate in-
coming packets where negative ones indicate corresponding
forwarded (relayed) packets.

Given network traffic data, the system was required to
decide if there is relay activity or not. The decision is given
based on the ¥ value described in Section 2.3. As discussed
in that section, the system calculates a ¥ value each time A
terms are collected. In our experiments, the decision in fa-
vor of the presence of a relay activity was made if the sum of
the most recent two U values exceeded the threshold value
th = 1000. The numbers 2 and 1000 are selected exper-
imentally and they are tuned to detect shorter relay activi-
ties which last only for a few hundred packets. However,
it should be noted that further reducing th value would en-
able detecting even shorter relay activity but would incur
the cost of increased false positive rates. On the other hand,
large th values could reduce false positive rates to arbitrar-
ily small values but the system can detect only long enough
relay activity.

In order to measure detection performance, the gener-
ated relay traffic was blended into real network traffic and
the overall traffic was fed to the system for analysis. If the
system was able to detect the relay activity by the time all

Under Web Server Traffic and A=500 Under Web Server Traffic and A=1000

=~L=100 ms| ._" —-1=100 ms|
Y = =200 ms| . = =200 ms|
o 08, n - L=400 ms o 08 . e =400 ms
k| * . -A-L=600 ms 5 u, -A-L=600 ms|
o Y o “,
208, 206
g | 2
o 0.4 NN o 0.4
° . o
2 S 3
= e = =
0.2 A 0.2
e
o b e ALy S o
0 200 400 600 800 1000 0 200 400 600 800 1000
Average Delay (ms) Average Delay (ms)
(a) A=500 (b) A=1000
Under Web Server Traffic and A=1500 Under Web Server Traffic and A=2000
T A, Il

o
o

o
)

o
=

True Positive Rate
True Positive Rate

—-L=100 ms| ~-L=100 ms|
0.2f| = L=200 ms 0.2}| = L=200 ms
= L=400 ms = .=400 ms|
-A-L=600 ms| -A-L=600 ms|
G0 200 400 600 800 1000 G0 200 400 600 800 1000
Average Delay (ms) Average Delay (ms)
(c) A=1500 (d) A=2000

Figure 3. True positive rate vs. average delay
curves under Web Server traffic.

relay packets are forwarded, then the number of true pos-
itives was incremented. This process was repeated several
times and at the end, the ratio of the true positives to the
number of all generated relay traffic was declared as the true
positive rate. The same experiment was then repeated once
more but this time without blending the relay traffic into the
real traffic. Hence, if the system declares a relay activity
then it means a false positive and the false positive counter
was incremented. Finally the ratio of the number of false
positives to the number of all generated but not blended re-
lay traffic gives the false positive rate.

3.2 Results

In this section the results of the experiments described in
the previous section are discussed. The experiments were
conducted using various time slot lengths (L), and various
(A) values which indicates the number of terms incorpo-
rated as discussed in Section 2.3 in Equation (4). The per-
formance was also investigated for various average delay
values that relay packets encounter. In the first set of exper-
iments we used only one pair of relaying flows (i.e. F' =1
in Equation (7)) and relay traffic consisted of 200 incoming
packets and the corresponding 200 outgoing relayed pack-
ets. The inter-arrival times between incoming relay pack-
ets were generated according to the model in Equation (10)
where p = 0.8, tshort = 100 milliseconds, osporr = 10,
Hiong = 3000 milliseconds and 0j,,y = 500. A de-
lay value was drawn from N (ftgeiay, aﬁelay) between each
incoming packet and the corresponding forwarded packet.
Here fi4e1qy Was changed throughout the experiments but
Odelay = D0 was kept fixed. Finally the resulting relay traf-
fic, which typically lasts for about 150-160 seconds, was

Under Mail Server Traffic and A=500 Under Mail Server Traffic and A=1000
1 1

~-L=100 ms|
= =200 ms|

~4-L1=100 ms|
= L=200 ms ~.
- =400 ms| 0.8 "o
-A-1L=600 ms|

- =400 ms|
-A-L=600 ms|

o
o

o
)

14
P
True Positive Rate

True Positive Rate

0.2) 0.2 L.
LT, ¥ S
.. LTI, 7
o RLLI WY ST o
0 200 400 600 800 1000 0 200 400 600 800 1000
Average Delay (ms) Average Delay (ms)
(a) A=500 (b) A=1000

Under Mail Server Traffic and A=1500 Under Mail Server Traffic and A=2000

g

True Positive Rate
True Positive Rate

—-L=100ms| .. ™ —=L=100 ms|
0.2t|"® L=200 ms 0.2} = L=200 ms|
o~ L=400 ms = |.=400 ms|
-A-L=600 ms| -A-L=600 ms|
00 200 400 600 800 1000 G0 200 400 600 800 1000
Average Delay (ms) Average Delay (ms)
(c) A=1500 (d) A=2000

Figure 4. True positive rate vs. average delay
curves under Mail Server traffic.

blended into the captured real traffic and true positive rate
was calculated.

Figure 3 and Figure 4 plot the true positive rates vs. aver-
age delay (Ugelay) Of the relay traffic where the relay traffic
is blended into web server traffic and mail server traffic re-
spectively. The experiment was repeated for parameter val-
ues A = 500, 1000, 1500, 2000 and L = 100, 200, 400, 600
milliseconds. Each of the four sub-figures corresponds to
a different A value whereas each sub-figure contains four
different curves each represents a different L value.

In all experiments, regardless of the A and L values, it
is observed that the true positive rate decreases as the av-
erage delay of the relay is increased. This behavior is ex-
pected since increased delay reduces the probability of re-
laying flows being active simultaneously in the same time
slot. In other words, as the delay increases, it is more likely
that the time slot during which the incoming packet is re-
ceived, elapses before the node forwards that packet. How-
ever, another interesting behavior was also observed in all
experiments. Even though the average delay value was way
greater than the length of the time slots (L), some of the re-
lay activities were still successfully detected. For instance
when the time slot length (L) was 100 milliseconds and the
average delay was 600 milliseconds, there is no way that
the incoming packets are relayed within the same time slot.
Therefore, at first sight it can be said that the system cannot
detect these relays although it certainly can as shown in Fig-
ures 3 and 4. The reason for this behavior is that sometimes
relay packets corresponding to previous incoming packets
are transmitted within the same time slot that a new packet
arrives. Therefore, although the same content isn’t being
relayed at the same time slot, both incoming and outgoing

True Positive Rate
True Positive Rate

400 600 800 1000 0O 200 400 600 800 1000

Average Delay (ms) Average Delay (ms)

(a) Under Web Server Traffic (b) Under Mail Server Traffic

Figure 5. True positive rate vs. average delay
curves for different “F” values.

relay flows still may simultaneously be active. This event
contributes to the increase in calculated ¥ value and enables
the system to detect some of these relays.

It is also observed that in all experiments, detection
performance decreases as the length of the time slots in-
creases. This is little bit counterintuitive since one may ex-
pect to capture relay activity more accurately with longer
time slots. However, in reality longer time slots means more
flows (relay or non-relay) are active within the same time
slot and therefore more random number terms added to the
overall sum as in the algorithm Calculate_S. Therefore,
the system collects “A” terms more rapidly, and hence is
forced to make a decision earlier. This sometimes prevents
relay flows from injecting sufficient number of packets in
order to be detected before the system makes decision. Con-
sequently some of the relay activities are left undetected
with larger L values.

Table 1. False positive rates

UNDER WEB SERVER TRAFFIC
L=100 L=200 L=400 L =600
A =500 0.0088 0.0085 0.0020 0.0020
A =1000 0.1257 0.0904 0.0441 0.0553
A =1500 0.1890 0.2022 0.1610 0.2024
A = 2000 0.2842 0.3077 0.2353 0.2554
UNDER MAIL SERVER TRAFFIC
L=100 L=200 L=400 L =600
A =500 0.0352 0.0067 0.0066 0.0043
A =1000 0.1337 0.0807 0.0702 0.0920
A =1500 0.1886 0.1839 0.1990 0.1827
A = 2000 0.2873 0.2557 0.2615 0.2657

On the other hand, increasing the “A” value certainly de-
lays the time that the system has to make a decision. There-
fore, relay flows will have enough time to inject sufficient
number of packets to be detected. This behavior can be ob-
served as an increased detection performance as we go from
Figure 3(a) to Figure 3(d) and from Figure 4(a) to Figure
4(d). However, this increase in the detection performance
comes at the cost of increased false positive rates as can
be seen in Table 1. This is primarily due to the fact that
the number of time slots which any two arbitrary flows are
simultaneously active within, increases as A is increased.

Effect of Relay Duration under Mail Server Traffic

o
@

o
@

True Positive Rate
True Positive Rate

——50 pckt =50 pkt . -
04 e 150 pokt 3 041 = 150 pokt) “oe..
- @-250 pek| “u.. --250 pek| B, T
0.2} 480pckt| e, 0.2}| 4350 pckt| LI
~+-450 pekt] =450 pek| o
-+-550 pcm\.\,_, -4-550 pektf——4+———— |
0 200 0 800 1000 0 200 800 1000

400 600
Average Delay (ms)

(b) Under Mail Server Traffic

400 60
Average Delay (ms)

(a) Under Web Server Traffic

Figure 6. True positive rate vs. average delay
curves for different number of relayed packets.

Effect of Chaff Packets under Web Server Traffic Effect of Chaff Packets under Mail Server Traffic

o
@

o
@

14
b

=0
- P(chaff)=0.2

~—P(chaff)=0
- P(chaff)=0.2

True Positive Rate
True Positive Rate

0.2}|-#-P(chaff)=0.4] 0.2}|-#-P(chaff)=0.4
A P(chaff)=0.6 A P(chaff)=0.6|
—-P(chaff)=0.8 —P(chatf)=0.8|
) 200 400 600 800 1000 G0 200 400 600 800 1000
Average Delay (ms) Average Delay (ms)

(a) Under Web Server Traffic (b) Under Mail Server Traffic
Figure 7. True positive rate vs. average de-
lay curves for different chaff packet probabil-
ities.

This is a simple fact from probability theory that if the size

of the universal set increases, the number of event occur-

rences increases as well, as long as the frequency of that
event remains constant.

When we look at the results presented in Figure 3, Fig-
ure 4, Table 1, we observe that some settings of the param-
eters lead to quite unsatisfactory results. For instance, in
the case when A = 500 and L = 600, the true positive
rate is too low. Therefore, the parameters A and L should
not be set to these values although they are included in the
figures to demonstrate the effect of changing parameters.
Similarly when A = 2000, even though true positive rates
are significantly higher, this setting shouldn’t be used due
to high false positive rates. However, if the proposed algo-
rithm were to be used as an initial step for relay flow de-
tection as discussed earlier, setting A = 2000 may not be a
bad idea. Because, in that case the nodes that are flagged by
the proposed algorithm would be further analyzed by a re-
lay flow detection algorithm in order to identify relay flows.
High false positive rates do increase the number of flagged
nodes but this computational inefficiency may still be better
as compared to the case where the proposed scheme is not
used at all as the initial step. In the rest of the experiments,
we set our algorithm parameters as A = 1000 and L = 100
as they lead to reasonable true positive and false positive
rates. However, for real deployments, some care will need
to be taken before setting algorithm parameters. Finally, it

was observed for all parameter values that the performance
for the mail server traffic was slightly worse than the per-
formance for web server traffic. The reason is that the mail
server traffic had higher average packet rates than the web
server traffic. Similar to the previous observations, the more
the packet rate, the traffic obtains the more active flows fall
within a time slot and hence the earlier the “A” terms are
collected. Therefore, the system has to make a decision ear-
lier under heavier traffic and consequently it may miss some
relay activities. In order to minimize this effect, the system
parameters should be carefully chosen according to the ex-
pected traffic characteristics. In the experiments identical
parameter settings are used for both web server and mail
server traffic for comparison purposes.

3.2.1 Effect of Multiple Flow Pairs

In the experiments described above, a single pair of flows
perform the relaying activity. However, it is possible that
a relay node could host multiple relay activities simultane-
ously. The number of such relay activities is denoted by
“F” in Section 2.2. In this section the performance of the
system was investigated for different values of F. In or-
der to demonstrate the performance, for a specific set of
parameters such as A = 1000 and L = 100, the system
is required to detect the presence of a relay activity when
there are multiple relaying flow pairs. As shown in Figure
5, the true positive rate increases drastically as the number
of relaying flow pairs increases. In fact the relay activity is
detected almost with 100% accuracy when there are more
than four relaying flow pairs. This result is not surprising
because higher values of F' also increases the variance (cr?;)
as observed in Equation (8).

3.2.2 Effect Relay Duration

In section 2.2, it was mentioned that theoretically relay ac-
tivity is detected if corresponding flows are simultaneously
active within more than one time slot. It was also men-
tioned that this was a purely theoretical conclusion and in
practice sufficiently many packets have to be relayed in or-
der to be detected. This section investigates the detection
performance for various relay durations and gives insight
about the minimum detectable relay duration. Here the du-
ration of a relay is measured as the number of relayed pack-
ets. In the experiment, where the parameters are chosen as
A = 1000 and L = 100, relay packets were generated by
the same model described in Section 3.1. The true posi-
tive rate vs. average delay curves for different number of
relayed packets are presented in Figure 6. As expected, it
is observed that the detection performance increases as the
number of relayed packets increases. This is because, as
the number of relayed packets increases the number of time
slots, within which the corresponding flows are active, also
increases. This exactly corresponds to the increase in 3y

values mentioned in Equation (7) and consequently increase
in 0% and 0.

On the other hand, it is also observed in Figure 6 that the
proposed scheme has low accuracy in detecting relays that
last for less than about 50-60 packets for the given underly-
ing traffic characteristics. Here it should be noted that the
underlying web server traffic and mail server traffic used in
the experiments have average packet rates of 70 packets/sec
and 76 packets/sec respectively. Since the average packet
rate of the mail server traffic is higher, when the curves
for mail server and web server traffic are compared, it is
expected that, the minimum detectable relay duration gets
lower and lower as the non-relay traffic of the node gets
lighter.

3.2.3 Effect of Chaff Packets

In order to disturb the correlation structure between relay-
ing incoming and outgoing flows, adversaries often blend
chaff packets into the relay stream. This enables an adver-
sary to relay information without being detected by flow-
correlation based relay detection algorithms. The chaff
packets usually carry no useful information. They can be
placed in the incoming flow and not relayed through the out-
going flow. They can also be generated by the relay node
and placed in the outgoing flow. In both cases the purpose
is to generate a packet in a flow which has no counterpart
in the corresponding flow. However, regardless of the chaff
packets, some of the packets (actual relay packets) still have
to be relayed within a certain time period in order the relay
node to serve its purpose. Those packets will still make the
incoming and outgoing flows simultaneously active within
a number of time slots. Hence, the proposed scheme will
be able to detect the relay activity. Therefore it can be said
that chaff packets have virtually no effect on the proposed
method. This property is clearly observed in the experi-
ments whose results are presented in Figure 7. In the ex-
periments, the system parameters are set to A = 1000 and
L = 100. After each relayed packet a chaff packet is gener-
ated with probability P(chaff) = 0,0.2,0.4,0.6, and 0.8.
These chaff packets take place only in incoming flow and
are not relayed through the outgoing flow. The inter-arrival
times for these chaff packets are determined by the same
model which determines the inter-arrival times of regular
incoming relay packets as described in Section 3.1. It is ob-
served that none of these P(chaff) values have decreased
the detection performance at all. On the contrary, as the
number of chaff packets is increased, the detection perfor-
mance is slightly improved especially for larger average de-
lay values. This is because these extra chaff packets in the
incoming flow sometimes coincides with other packets in
the outgoing flow and therefore increase the number of time
slots that both flows are simultaneously active.

4 Conclusion

Due to their potential harmful effects, identifying relay
nodes in the network can improve security policy enforce-
ment. In this work, the delay constrained relay node detec-
tion problem is investigated. A statistical solution, which
has linear time and space complexity, is proposed. The
proposed algorithm is lightweight and simple, therefore it
is scalable and can be used in large scale implementations
which may require real time detection.

For some applications identifying relay nodes may be
sufficient. If an application requires flow level relay identi-
fication, one of the existing relay flow detection techniques
can be subsequently applied to the relay nodes which have
been flagged by the proposed method. The contribution of
this work is then in terms of computational complexity, as
quadratic time relay flow detection algorithms now have to
be executed only for flagged nodes rather than every node
in the network.

Experimental results show that the proposed scheme
is robust against various possible adversarial or non-
adversarial modifications on the underlying network traf-
fic. In summary, the experiments reveal that the proposed
scheme withstands some extent of packet delays which
could be introduced due to packet processing time or for ad-
versarial purposes. Also the algorithm is shown to be able to
detect relay activity even if the flows contain chaff packets
intended to defeat relay detection systems.

There are few limitations of the proposed scheme. First
of all relay nodes should be delay-constrained. That is to
say, if incoming packets were buffered long enough before
they are forwarded, the algorithm would not be able to de-
tect. Also it is assumed that the flows are relatively sparse
such that they are active for some of the time slots and inac-
tive for others. Otherwise, if a flow were continuously ac-
tive within all observed time slots, then it would appear as a
relaying flow since would be simultaneously active with all
the other flows. In the current setup of the proposed scheme,
if a node contains such flow, then it will be detected as a re-
lay node.

There is a lot of work that still needs to be done. As
part of our future work effort, we plan to focus on meth-
ods which can increase the detection performance such that
higher true positives rates and lower false positive rates can
be achieved. One possible way to achieve this could be us-
ing a different alignment of time slots for each of the si-
multaneous S calculations (i.e. time slot boundaries are
not aligned for each simultaneous C'alculate_S execution).
This could enable some of the calculated S values to catch
relay activity which the others might have missed. Also an
adaptive selection of algorithm parameters, which adjust the
parameters according to encountered traffic characteristics,
might be very useful especially when the traffic characteris-
tics tend to change over time. This could be done by sensing

and analyzing the ongoing traffic and reacting accordingly.
Finally, we also plan to deploy our algorithm in a large scale
implementation such that, in order to experimentally verify
its ability to monitor thousands of network nodes and detect
relay activity in real time.

References

[1] D.S. A. Blum and S. Venkataraman. Detection of interactive
stepping stones: Algorithms and confidence bounds. In Con-
ference of Recent Advance in Intrusion Detection (RAID),
Sophia Antipolis, French Riviera, France, September 2004.

[2] D. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford. Multiscale stepping-stone detection: Detecting
pairs of jittered interactive streams by exploiting maximum
tolerable delay. In Fifth International Symposium on Recent
Advances in Intrusion Detection, Lecture Notes in Computer
Science 2516, New York, Springer, 2002.

[3] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and S. Sen.
P2p the gorilla in the cable. In National Cable and
Telecommunications Association (NCTA) 2003 National
Show, Chicago, IL, June 2003.

[4] T. He and L. Tong. A signal processing perspective of
stepping-stone detection. In Proc. of IEEE CISS 06, Prince-
ton, NJ, 2006.

[5] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy.
Transport layer identification of p2p traffic. In Proc.
4th ACM SIGCOMM Conf. on Internet Measurement,
Taormina, Sicily, Italy,, October 2004.

[6] R. Meent and A. Pras. Assessing unknown network traf-
fic. In CTIT Technical Report 04-11, University of Twente,
Netherlands, February 2004.

[7] S. Ohzahata, Y. Hagiwara, M. Terada, and K. Kawashima.
Aa traffic identification method and evaluations for a pure
p2p application. In Lecture Notes in Computer Science, vol-
ume 3431, 2005.

[8] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-
network identification of p2p traffic using application sig-
natures. In Proc. 13th Int. Conf. on World Wide Web, NY,
2004.

[9] S. Staniford-Chen and L. Heberlein. Holding intruders ac-
countable on the internet. In Proc. IEEE Symposium on Se-
curity and Privacy, Oakland, CA, page 3949, May 1995.

[10] K. Suh, D. Figueiredo, J. Kurose, and D. Towsley. Char-
acterizing and detecting skype-relayed traffic. In Proc. of
Infocom, 2006.

[11] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of
interpacket delays. In CCS ’03: Proceedings of the 10th
ACM conference on Computer and communications secu-
rity, pages 20-29, 2003.

[12] K. Yoda and H. Etoh. Finding a connection chain for trac-
ing intruders. In F. Guppens, Y. Deswarte, D. Gollamann,
and M. Waidner, editors, 6th European Symposisum on Re-
search in Computer Security - ESORICS 2000 LNCS -1985,
Toulouse, France, October 2000.

[13] Y. Zhang and V. Paxson. Detecting stepping stones. In
Proceedings of the 9th USENIX Security Symposium, page
171184, August 2000.

