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Abstract—We present an efficient and robust stepping-stone detec-
tion scheme based on succinct packet-timing sketches of network flows.
The proposed scheme employs an online algorithm to continuously
maintain short sketches of flows from a stream of captured packets
at the network boundary. These sketches are then used to identify
pairs of network flows with similar packet-timing characteristics, which
indicates potential stepping-stones. Succinct flow sketches enable the
proposed scheme to compare a given pair of flows in constant time. In
addition, flow sketches identify pairs of correlated flows from a given
list of flows in sub-quadratic time, thereby allowing a more scalable
solution as compared to known schemes. Finally, the proposed scheme
is resistant to random delays and chaff, which are often employed by
attackers to evade detection. To explore its efficacy, we mathematically
analyze the robustness properties of the proposed flow sketch. We also
experimentally measure the detection performance of the proposed
scheme.

Keywords-Network Security, Stepping-Stones, Streaming Al-
gorithms, Data Sketching

I. INTRODUCTION

We consider the real-time network-based stepping-stone
detection problem. Our approach is based on data sketches,
which are widely used in the context of streaming algorithms
[1][2][3]. In general, these methods maintain short sketches
of data streams, which are used to efficiently answer various
queries about the data stream, such as rangesum, heavy
hitters, quantiles etc. Adopting a similar philosophy, we
propose a novel stepping-stone detection scheme based on an
online algorithm, which continuously maintains sketches of
network flows from a stream of captured packets at the bor-
der of a network. Using these sketches, the proposed scheme
identifies stepping-stones faster than the existing methods,
without compromising robustness to timing perturbations,
such as jitter and chaff.

Stepping-stones are one of the effective strategies adopted
by network perpetrators to maintain anonymity of an attack.
In a stepping-stone strategy, instead of direct communi-
cation, an attacker uses a series of intermediate nodes,
called stepping-stones, to relay her commands to a victim.
Consequently, if the victim detects that he is under attack,
he will only know that the attack packets are coming from
the closest intermediate node.

An intermediate node of a stepping-stone chain essentially
relays information from one of its ingress flows to one of its
egress flows. In general, it is possible to observe a certain

correlation between relaying ingress-egress flow pairs, such
as identical payload or similar packet timings. Therefore,
one can detect stepping-stones in a network by searching
for such correlations between ingress and egress flows at
the network boundary. This kind of stepping-stone detection
at network borders can be utilized in two major ways:
• If a pair of flows is detected to be a part of a stepping-

stone chain, they can be blocked immediately to stop the
attack, thereby preventing further harm.
• If the records of correlated flow pairs are collected

from different networks, one can compile them to po-
tentially traceback stepping-stone paths and identify the
source of an attack. To give an example, “Cooperative
Intrusion Traceback and Response Architecture (CITRA)”
[4] is a framework that potentially benefits from a flow
correlation based stepping-stone detection running at net-
work borders. CITRA enables firewalls, routers, intrusion
detection systems etc. from different networks to collaborate
and exchange information using the “Intrusion Detection
and Isolation Protocol (IDIP)” [5]. It’s objective is to trace
intrusions across networks boundaries, as close as possible
to the true origin, and to automatically generate immediate
responses in order to prevent intrusions from causing any
further damage. Hence, incorporating a flow correlation
based stepping-stone detection in CITRA potentially enables
both prevention and attribution of stepping-stone attacks.

A network-based stepping-stone detection scheme has to
possess two key properties in order to be reliably employed:

i) Efficiency/Scalability: To detect and block ongoing
attacks, a stepping-stone detection scheme should be able
to identify correlated flows in real time. For this purpose, it
has to process a dense packet stream, composed of numerous
concurrent ingress and egress flows, very efficiently both in
terms of computation and memory.
ii) Robustness: A stepping-stone detection scheme should
be resistant to network imperfections (jitter, packet drops)
and to various evasion techniques (chaff, random packet
delays) often employed by attackers. In general, such pertur-
bations disrupt the correlation between flows of a stepping-
stone chain, thereby potentially preventing a stepping-stone
detection scheme from detecting underlying timing correla-
tions.



There are several stepping-stone detection schemes pro-
posed in the literature. In earlier, [6][7][8][7] authors pro-
posed several flow-correlation algorithms which can quickly
identify correlated flows based on simple timing features,
such as packet counts, inter-packet time difference etc.
However, they provide very limited or no resistance to
some of the aforementioned timing perturbations, especially
packet drops/retransmissions and chaff. On the other hand,
the schemes which are designed to resist chaff [9][10] are
relatively slower. That is, in order to decide if given a
pair of flows are correlated, they essentially try to find a
matching packet on one flow for each packet on the other
one. However, comparing a pair of flows in linear time
in the number of packets and doing it for every pair of
ingress-egress flows does not scale to moderate to large
networks. Another potential scalability issue is that existing
schemes are not designed to work directly on packet streams.
Basically they need to continuously reconstruct flows from
a packet stream and frequently compare each of the active
m ingress flows with each of the active n egress flows in
O(nm) time, which potentially raises several memory and
computation issues.

In this work, we aim to design an efficient stepping-
stone detection scheme without significantly compromising
resistance against timing perturbations. For this purpose, we
propose a stepping-stone detection scheme based on flow
packet-timing sketches. A packet-timing sketch of a flow is
a short, constant-length integer array, which summarizes the
flow’s packet-timing information. The proposed stepping-
stone detection scheme continuously maintains succinct,
constant-length sketches of active flows’ packet-timing in-
formation from a stream of captured packets at a network
border. These sketches are then used to efficiently identify
correlated flows. The proposed flow sketches are maintained
very efficiently by a streaming algorithm. The algorithm per-
forms a few arithmetic operations for each packet, thereby
allowing simultaneous sketching of thousands of concurrent
active flows from a packet stream. In addition, the sketches
of a pair of correlated flows remain similar, even if the flows
encounter various timing perturbations. Hence, the proposed
scheme is able to detect the correlation between flows of a
stepping-stone chain under the presence of random delays
and chaff packets.

To demonstrate the efficacy of the proposed scheme, in
this paper we present various experimental results where we
used real network traces. In addition, we also mathematically
explain and analyze the proposed stepping stone detection
scheme, where we make the following contributions:
• We prove that, given chaff rate and maximum packet

delay values, the difference between sketches of a pair
of correlated flows has an upper-bound in the expecta-
tion sense. This upper-bound justifies that the proposed
scheme is expected to be able to identify correlated
flows with high probability as long as the introduced

packet delays and chaff are within acceptable limits.
• Exploiting the fact that the sketches of correlated flows

are similar, we show that the proposed stepping-stone
detection scheme can find correlated flows, with high
probability, among m ingress and n egress flows in
O(n+

√
nm) time.

The remaining of this paper is organized as follows: In
Section II, we present preliminaries and define the problem
formally. Then, in Section III, we explain the proposed
stepping-stone detection scheme in greater detail. Following
that, to demonstrate the efficacy of the proposed scheme,
we present our experiments and results in Section IV. We
present the limitations of the proposed scheme and possible
solutions in Section V. Finally we present related work and
conclusions in Section VI and Section VII, respectively.

II. PRELIMINARIES AND PROBLEM DEFINITION

Definitions:
• A network flow is defined as the collection of packets
having the common five-tuples of source IP, source port,
destination IP destination port and protocol (UDP or TCP).
• An active flow is defined as a flow which transmits
its most recent packet not more than TMaxIdle seconds
ago. TMaxIdle is the maximum idle threshold and we set
TMaxIdle = 60 seconds in this work.
• An ingress (or egress) flow with respect to a network is a
flow which comes into (or goes out of) the network. More
specifically, the destination IP of the packets of an ingress
flow is within the network whereas that of egress flows is
out of the network.
Stepping-Stone Attacks:
A stepping-stone attack incorporates several consecutive
flows established between intermediate nodes, as illustrated
below, where the attacker (A) first makes a connection to an
intermediate node (Nd1); then from Nd1 he makes another
connection to another intermediate node (Nd2) and so on
all the way to the victim.

A→ Nd1 → Nd2 → . . .→ Ndh−1 → Ndh → V

This chain of connections is referred as a stepping-stone
chain and the intermediate nodes are often called stepping-
stones. Each connection between two successive nodes on
a stepping-stone chain is a separate network flow. These
flows relay information from A to V through intermediate
nodes. However, one cannot observe this directly from their
payloads, as each flow is assumed to be encrypted with a
different key in most cases, such as an SSH tunnel based
stepping-stone chain. The response of V to A’s packets
might be relayed back to A through a series of flows with
reverse directions, such as “A ← Nd1 . . . ← Ndh ← V ”,
or might be relayed through a completely different path.

Throughout this work we assume the attacker is con-
strained by a maximum tolerable delay [11], since he
needs to interactively communicate with the victim. In other



words, packets cannot be delayed more that the maximum
tolerable delay along a stepping stone chain. As a result, the
flows on a stepping stone chain have similar packet timing
characteristics, which allows timing based stepping-stone
detection systems to identify stepping-stones in a network.

Packet Delays, Jitter, Retransmissions and Chaff:
There are various factors that potentially perturb the similar
packet-timing characteristics among the flows of a stepping-
stone chain, thereby making their discovery difficult. For
instance, networks might introduce jitter on packet tim-
ings or packets might be delayed at intermediate nodes
since they might need to first process each packet (i.e.
re-encryption) before relaying. In addition, some packets
might be dropped in the network and retransmitted. On the
other hand, attackers might introduce intentional random
packet delays to disrupt the correlation between the flows
of a stepping-stone chain in the hope of evading detection.
Attackers might also introduce superfluous packets, called
chaff, which contain no valuable information and are not
relayed to the succeeding flow on the chain. A packet-timing
based stepping-stone detection scheme should be resistant to
such perturbations.
Real-Time Stepping-Stone Detection Problem Definition:
A stepping-stone detection system, monitoring network traf-
fic at the network border, observes numerous active ingress
and egress flows at any given time. Let Iti and Etj denote
these active ingress and egress flows at time t, respectively,
where i = 1, 2, ..., n and j = 1, 2, ...,m. If there’s an
active stepping-stone attack passing through the network,
there should be at least one pair of ingress/egress flows,
which have similar timing characteristics. More formally,
there should be at least one flow pair, {Iti , Etj}, such that
Diff(Iti , E

t
j) < T , where Diff(., .) is some packet-timing

difference measure based on the packets observed so far
and T is a threshold value. We refer the flows of a such
ingress/egress flow pair having similar packet-timings as
correlated flows.

Notice that, Iti and Etj don’t necessarily have a common
endpoint, since two successive intermediate nodes might be
in the same network and hence the flow between them is
not observable at the network border. Hence, one needs
to consider that every pair of ingress/egress flows is a
potential correlated flow pair, thereby forcing an O(nm)
time search. As a result, the stepping-stone detection prob-
lem at time t can be defined as: given the flows Iti and
Etj , find all ingress/egress flow pairs {Iti , Etj}, such that
Diff(Iti , E

t
j) < T . We refer to the procedure of solving

this problem as correlated flow search. Finally, since the
network has to be continuously monitored, the correlated
flow search has to be periodically repeated at times t, t +
∆, t+ 2∆, t+ 3∆, ...etc, where ∆ should be selected small
enough such that, a stepping-stone attack shouldn’t be able
to start and finish between two search procedures and evade
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(a) Correlated Flows
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(b) Uncorrelated Flows
Figure 1. Packet-count vectors of a pair of correlated flows (a) and a
pair of uncorrelated flows (b). The upper figures plot packet-count vectors
separately whereas the lower figures are the difference between packet-
count vectors. All flows last for 60 seconds and the time-slot length is
LTS = 500 ms.

detection.
Solving the real-time stepping-stone detection problem,

especially for large networks, is a challenging task as the
solution has to be:
• Memory Efficient: A stepping-stone detection scheme
should consume minimal amount of memory for each flow
in order to be able to process hundreds of thousands of active
connections.
• Computationally Efficient: A stepping-stone detection
scheme should complete each correlated flow search proce-
dure within ∆, before the subsequent search begins. There-
fore, it should employ a correlated flow search algorithm
faster than O(mn).

III. SKETCH-BASED STEPPING STONE DETECTION IN
REAL-TIME

In this section, we present a real-time stepping stone
detection schem. In summary, the proposed scheme employs
an online algorithm to continuously maintain packet-timing
sketches of active flows from a stream of packets. As a
result, the scheme is memory efficient, since, for each flow,
it keeps only a succinct sketch, which is a constant length
integer array. In addition, while maintaining flow sketches,
the proposed scheme periodically performs the correlated
flow search, based on the Hamming Distances between
binarized flow sketches, which yields a computationally-
efficient search algorithm as presented in Section III-B.
A. Flow Packet-Timing Sketch

1) Overview and Basic Idea:
In order for the proposed scheme to be efficacious,

sketches of correlated flows should be as similar to each
other as possible, whereas those of uncorrelated flows should
be as different from each other as possible. In addition, for
efficiency, these sketches are required to be succinct.

Sketch Computation: One way to obtain a sketch with
such properties is to compress packet-timing characteristics
of a flow using a linear transformation. A linear transfor-
mation maps an input vector from one space to another
space by projecting input vector onto a set of basis vec-
tors. The projection values, which are called the transform
coefficients, highly depend on the dynamics of the input



vector. Therefore, transform coefficients of similar input
vectors will be also similar to each other. As a result, one
can select a small set of linear transform coefficients for
each flow as its sketch, and use it to distinguish between
correlated and uncorrelated flows. Based on this strategy, in
this work, we compute the sketch of a flow as follows: i)
We first convert the packet-timing information of the flow to
a standard vector representation, which we call the packet-
count vector. Elements of a packet-count vector, which will
be explained in the next subsection, are basically the number
of packets that the flow transmits in consecutive time-
slots. It is clear that, correlated flows have similar packet-
count vectors whereas uncorrelated flows have different. An
example case is illustrated in Figure 1, where the packet-
count vectors of two correlated flows and the difference
between them is shown in Figure 1(a). On the other hand, the
difference between packet-vectors of two uncorrelated flows
is shown in Figure 1(b). ii) Then we apply a random linear
transformation, whose basis vectors are composed of random
integers, to the packet-count vector and obtain a small set of
coefficients as the sketch of the flow. The resulting sketch is
an integer array and we refer this sketch as the integer-array
sketch of the flow.

Efficient Search for Correlated Flows: When it comes
to the correlated flow search, we use binarized sketches. The
binarized (or binary) sketch of a flow is nothing but the signs
of the elements of its integer-array sketch. They enable us to
efficiently search for the correlated flows using the Hamming
Distance. The basic idea of the proposed efficient search is
that although the binary sketches of two correlated flows
are not exactly the same, a short random subset of their
sketch bits match exactly with high probability. Therefore,
instead of comparing the sketches of every ingress flow with
that of every egress flow, one can compare only the pairs
whose certain bits match with each other and thus end up
comparing pairs of correlated flows, with high probability.
The details of the algorithm is given in Section III-B.

2) “Packet-Count Vector” Representation:
To a employ a linear transformation, we first need to

represent the flow’s packet-timing information as a vector.
For this purpose, we consider the time axis as a series of
non-overlapping consecutive time slots. Then, using these
time-slots, we define the packet-count vector of a flow as
the number packets that the flow transmits at each time-slot.
More formally, let LTS denote the length of these time-
slots forming the time axis. Then time slot t is defined
as the tth time interval after an epoch (Tepoch) such that
[Tepoch + (t− 1)LTS , Tepoch + (t)LTS ]. Based on these
time-slots, we can specify the packet-count vector of flow
F as VF , such that VF (t) is equal to the number of packets
that flow F transmits during time-slot t.

Conceptually VF is an infinite length vector ranging from
t = −∞ to t = ∞. However, it is obvious that VF (t) can

get non-zero values only during the lifetime of flow F , as
F transmits no packet before it begins or after it ends.

3) Random Linear Transformation and Integer-Array
Sketch:

After computing the packet-count vector of a flow, we
apply a random linear transformation to obtain the integer-
array sketch, by projecting the packet-count vector VF onto
the k random basis vectors Bi=1,2,...,k , as follows:

CF (i) =
∞∑

t=−∞
Bi(t)VF (t) (1)

where the elements of random bases are random numbers
drawn from a Bernoulli distribution with p = 0.5 such that:

Pr(Bi(t) = 1) = Pr(Bi(t) = −1) =
1
2

(2)

Notice that, although the summation is from t = ∞ to
t =∞, we only need to sum over the time slots during which
flow F transmitted at least one packet (i.e. when VF (t) 6= 0).
Therefore, the coefficients can be computed in real time as
the packets arrive, as explained in Section III-A6.

4) Binarizing the Integer-Array Sketch:
While continuously maintaining the integer-array sketch

of a flow, we perform correlated flow search based on binary
sketches, which allow us to design faster search algorithms.
For this purpose, we simply compute the binary sketch
from the signs of these coefficients when needed. More
specifically the ith bit of the sketch of flow F is computed
as:

SF (i) =
{

1 , if CF (i) > 0
0 , if CF (i) ≤ 0 (3)

5) Resistance of Binary Sketch to Timing Perturbations:
It is important for the proposed scheme that a binary

sketch stays similar even though the flow encounters timing
perturbations, such as packet delays and chaff. To mathe-
matically investigate this, we consider a pair of correlated
flows, namely F and F ′, representing two flows on the
same stepping-stone chain. Since they are correlated, the
Hamming Distance between the binary sketches of F and
F ′ is required to be low, such that “HamDist(SF , SF ′) <
threshold”. Or equivalently, the bit-error probability be-
tween the sketches of F and F ′ should be low. To represent
bit-error probability between SF and SF ′ , we define the er-
ror probability of ith bit location, Pe[F,F

′]
i , as the probability

of ith bit of SF and ith bit of SF ′ being different than each
other. Combining this with Equation (3) we can write:

Pe
[F,F ′]
i = Pr [SF (i) 6= SF ′(i)]

= Pr [sign(CF (i)) 6= sign(CF ′(i))]
(4)

To determine this probability with respect to the difference
between F and F ′, we denote the difference (or error)
between the packet-count vectors of F and F ′ by E as, such
that:
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Figure 2. The upper-bound for average Bit-Error Probability of a sketch
for different maxDelay and chaffRate.

E(t) = VF ′(t)− VF (t) (5)

Then, combining this with Equation (1), we can write ith

linear transform coefficient of F ′ as:

CF ′(i) =
∑∞
t=−∞Bi(t) [VF (t) + E(t)]

= CF (i) +
∑∞
t=−∞Bi(t)E(t) (6)

Recall that, a bit-error occurs only when
sign(CF (i)) 6= sign(CF ′(i)). And this only
happens when

∣∣∑∞
t=−∞Bi(t)E(t)

∣∣ > |CF (i)| and
sign(

∑∞
t=−∞Bi(t)E(t)) 6= sign(CF (i)). Therefore, we

can write:

Pe
[F,F ′]
i ≤ Pr

[∣∣∣∣∣
∞∑

t=−∞
Bi(t)E(t)

∣∣∣∣∣ > |CF (i)|

]
(7)

Since Bi(t) values are i.i.d. Bernoulli random variables
with µ = 0 and σ2 = 1 as presented in Equation (2), one
can derive that

∑∞
t=−∞Bi(t)E(t) is also a random variable

with µ = 0 and σ2 =
∑∞
t=−∞ E(t)2. Hence, from Equation

(7) and Chebyshev Inequality, we can write:

Pe
[F,F ′]
i ≤

∑∞
t=−∞ E(t)2

|CF (i)|2
(8)

The above bound indicates that, as a pair of correlated
flows become more different than each other, the bit-error
probability between their binary sketches increases. It also
shows that as the magnitude of linear transform coefficients
increases, which essentially means that the flows transmit
more packets, their sketches become more resistant to per-
turbations.

To visualize how this bound changes with respect to delay
and chaff, we computed

∑∞
t=−∞ E(t)2 and |CF (i)|2 for

1000 correlated flow pairs. We used 512-bit sketches, there-
fore we have i = 1, 2, ....512. We obtained correlated flows
by modifying 1000 original flows, which are 60-second long
SSH flows captured at our network border, with uniformly
distributed packet delays and random chaff insertions. Recall
that, the bound is different for each bit position depending
on the magnitude of the corresponding transform coefficient.
Hence, for each correlated flow pair we computed the bit-
error probability in expectation sense by using average

coefficient magnitude, such that Peexp =
P∞

t=−∞ E(t)
2

1
512

P512
i=1 |CF (i)|2 .

Figure 2 plots the average Peexp of all 1000 flow pairs
for different maxDelay and chaffRate values. As expected,
the average bit-error probability bound increases with both
increasing max delay and increasing chaff rate. It is also
observed that, the Hamming Distance between the sketches
of a pair of correlated flows is expected to be less than a
threshold as long as maxDelay and chaffRate don’t exceed
a certain value.

6) Online Computation of Packet-Timing Sketches:
In this subsection we present an efficient algorithm to

simultaneously compute packet-timing sketches of all ob-
served flows. The algorithm computes sketches continuously
in a cumulative way. Therefore, the sketch of a flow with
respect to the packets received so far is available at any
desired time even if the flow is still active. The essence of
the algorithm is to cumulatively compute Equation (1) by
updating linear transform coefficients (CF (i)) for each cap-
tured packet. Since VF (t) indicates the number of packets
that flow F has in time-slot t, Equation (1) essentially ac-
cumulates the random basis vector values for the time-slots
that the observed packets are transmitted. More formally, for
each packet p of flow F , the algorithm updates transform
coefficients as follows:

CF (i)← CF (i) +Bi(tp) (9)

where tp indicates the time-slot which packet p is trans-
mitted. The pseudo-code for the algorithm performing this
procedure for all flows is given below. The algorithm runs on
the packet stream Φ and take three inputs namely the epoch
(TEpoch), length of the time-slots (LTS), and the number
of transform coefficients−equivalently the length of binary
sketches−(k) for each flow. The subroutines getF low() and
getT imeStamp() extracts the flow information that the
packet belongs to and the time stamp from a a packet
respectively. The algorithm might compute the random basis
vector elements “Bi(t)” online whenever needed. However,
since packets arrive roughly in chronological order, Bi(t)
values can be pre-computed for a sliding window of time
and stored in a cache repository for practical purposes.

Algorithm 1 MaintainSketches(TEpoch, LTS , k)
for all packet P captured on stream Φ do
F ← getF low(P ) {Determine the flow of P}
t = b getT imeStamp(P )−TEpoch

LT S
c {Determine current time slot}

for i = 1 to k do
CF (i)← CF (i) +Bi(t)

end for
end for

The above algorithm continuously maintains an integer-
array sketch for each active flow. If the binary sketch of a
flow is required at any time, the algorithm simply computes
it from the signs of the current value of integer-array
sketch of that flow as explained in the previous subsection.
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The above algorithm simply updates k coefficients of the
corresponding flow for each packet. Since k is constant
(typically k = 512), the algorithm runs in linear time in
the number of packets. Also, the algorithm requires linear
space in the number of active flows since a constant length
integer array is maintained for each active flow.

B. Efficient Search for Correlated Flows

In this subsection, we present an approximate search al-
gorithm based on binary sketches, which finds all correlated
flows in O(n +

√
nm) time, with high probability. The

algorithm is similar to the algorithm proposed in [12], where
the authors search a large audio database using robust audio
hashes. The algorithm steps are given below:
• We first pick α random bit locations on binary sketches,
where 2α =

√
nm. We refer the bits on these random

locations of a flow’s sketch as the subsketch of that flow.
More formally, let b1, b2, ..., bα be these random bit lo-
cations, where k is the sketch length and α ≤ k. Then
[SF (b1), SF (b2), ..., SF (bα)] is the subsketch of flow F .
• Then for n ingress flows, we construct a lookup table,
which is used to access an ingress flow from its subsketch.
Note that the size of the lookup tables is 2α =

√
nm, since

a subsketch can have 2α possible values.
• Following that, for each egress flow Fe, we compute the
Hamming Distance between the binary sketch of Fe and
the binary sketches of ingress flows whose subsketch is
the same as the subsketch of Fe. Notice that, we use the
lookup table constructed in the previous step to find the
ingress flows with the matching subsketches. If any of the
Hamming Distances is smaller than the threshold th, Fe and
that particular ingress flow are declared as correlated.
• Finally, in case we miss comparing some of the correlated
ingress/egress flow pairs, we repeat the above steps β times,
each time with a different subsketch bit locations.

Recall that n and m are the number of ingress and egress
flows respectively. Hence, the proposed search algorithm
computes the lookup table in O(n) time. After that, it
compares each of the m egress flows with on average
n/2α flows, since on average 1/2αth of the ingress flows
matches the subsketch of a given egress flow. And the

algorithm repeats this β times. As a result, the proposed
search algorithm runs in O((n + mn/2α)β) time in the
expectation sense. Since we set 2α =

√
nm, and β is

typically a small constant, the proposed algorithm’s run time
is O(n+

√
nm).

The proposed search algorithm can find correlated flow
pairs only if their subsketches match in at least one of
the β repetitions. To find the probability of that event, let
Pmatch denote the probability of two flows, whose sketches
are closer than th, having the same subsketch. Then we
can write that, Pmatch ≥

∏α−1
i=0

k−th−i
k−i , where k is the

sketch length. Using this, we can write the probability of
the proposed search algorithm finding an ingress/egress flow
pair, the Hamming Distance between whose sketches are
smaller than th, in β repetitions as Pfind = 1 − (1 −
Pmatch)β ≥ 1−

(
1−

∏α−1
i=0

k−th−i
k−i

)β
. It is clear that Pfind

approaches to 1 as β increases. To give an example, in
Figure 3, we plot Pfind, for different mn and β, where
we set 2α =

√
mn, where the sketch length is k = 512

and the threshold is th = 71. Threshold was set to allow
10−4 false positive rate as will be explained in Section IV.
It is observed that Pfind climbs rapidly with β, and when
β ≈ 50, the proposed search algorithm is expected to find
almost all flows whose sketches are closer than th.

IV. EXPERIMENTS AND RESULTS
To demonstrate the efficacy of the proposed stepping-

stone detection method we set up an experiment, which
measures how successfully the correlated flows can be
detected under a fixed false alarm probability.
Obtaining Correlated Flows: In most cases, stepping-stone
attacks are carried over an interactive protocol, such as SSH.
Therefore, to obtain correlated flows, we first captured 100
real SSH flows, at our network’s border. We refer these flows
as the original flows. We observed that the original flows
transmitted 2.4 packets per second on average. Then for each
of these original flows, we obtained a perturbed flow, by
delaying packets and introducing chaff. Despite the delay
and chaff, a perturbed flow is considered to be correlated
to the flow it originated from. To obtain a perturbed flow
from an original flow, first we delayed each packet of the
original flow by a random amount chosen uniformly from the
interval [0,maxDelay ]. Then, we introduced chaff packets
to both the original flow and the perturbed flow at random
times, where the ratio of the number of introduced chaff
packets to the number of original packets was determined
by chaffRate .
Searching for Correlated Flows: Once we obtained these
100 correlated flow pairs, we blended them into the real
network network trace, which was previously captured at our
network’s border during a typical weekday. Then, we ran the
proposed stepping-stone detection technique on the blended
trace as if it was a real-time network traffic. The proposed
technique continuously maintained the sketches of the active



flows in the network trace as packets were captured. To deal
with terminated flows, we checked whether the flows were
still active once in every minute. A flow and it’s sketch were
erased if it was idle for more than 60 seconds. Finally, to
identify the correlated flows in the trace, we performed the
proposed correlated flow search at every ∆ = 10 seconds.
We believe ∆ = 10 is reasonable because, it is very hard for
an attacker to start and finish her attack within 10 seconds.
During the search, we used 16-bit subsketches and and 50
lookup tables, such that α = 16 and β = 50 as explained
in Section III-B . With those specific α and β values, we
were able to perform the search in O(n +

√
nm) time for

up to n = 105 active ingress and m = 105 active egress
flows, since (216)2 ≈ 1010. We declared a pair of flows
as correlated, when we found out in any of these periodic
search processes that the Hamming Distance between the
binary sketches of those flows were below a threshold th.
Finally, to quantify the performance of the proposed scheme,
we measured the detection rate as the ratio of the number
of correctly identified correlated flows to the number of all
correlated flows blended into the trace.
Selecting the Threshold: A proper setting of the detec-
tion threshold th was crucial for our experiments. Like
all detection methods based on thresholds, the lower the
threshold the higher the false alarm rate and the higher the
threshold the lower the detection rate. In our experiments,
we picked the detection threshold, which yielded the fixed
10−4 false alarm rate. We believe that, 10−4 false alarm
rate is acceptable in most cases. To determine a such
threshold, one needs to estimate the probability distribu-
tion of the Hamming Distances between binary sketches
uncorrelated flows. For this purpose, we first empirically
computed the probability distribution of Hamming Distances
between the binary sketches of 5000 uncorrelated SSH flow
pairs captured at our network’s border. During that process,
we made sure that the flows were concurrent, by shifting
them in time. This enabled us to produce a more realistic
estimate, since a stepping-stone detection scheme searches
concurrent flows for correlated pairs. Once we computed the
empirical distribution, we fitted a Gaussian on the empirical
distribution. Then we picked the threshold value th such
that, the integral of the fitted Gaussian from −∞ to th was
equal to 10−4, such that

∫ th
−∞fG(h) dh = 10−4. We plot

the computed empirical distribution, fitted Gassian and the
selected threshold value for 512-bit sketches in Figure 4,
where we used 500 millisecond time-slots.

Notice that, the distribution of Hamming Distances be-
tween the sketches of uncorrelated flows should ideally be a
Binomial distribution with p = 0.5. However, the empirical
distribution deviated from the ideal as observed in Figure 4.
The reason is that, even though the flows were uncorrelated,
their packet-count vector representations show some coarse
similarities. For instance, since we used quite long time slots
(i.e. 500 milliseconds), there’s a good chance that a pair
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Figure 4. The empirical probability distribution of the Hamming Distances
between the binary sketches of uncorrelated flows (durations between 10
and 40 seconds) and the Gaussian probability distribution function approx-
imating the empirical distribution. The vertical line marks the threshold
value (i.e. th = 71) for false alarm rate of 10−4.

of uncorrelated flows share many common time slots that
they are both active in, although they usually have different
number of packets within a given time-slot.
Real-Time Exclusions in the Correlated Flow Search: In
our experiments we excluded some flows in the correlated
search process, since they had no potential to be a part
of a stepping-stone attack. Our concern was not about
the computational efficiency but rather about the detection
performance, since such flows might introduce extra false
positives. In order to be real-time, we identified and excluded
such flows in real time as well. In our experiments, we
excluded the following cases:
• Flows With Reverse Directions: In most cases, two hosts
communicate with each other through a pair of flows (one
for each direction), where one flow’s source IP and port is
other flow’s destination IP and port. Although, such a pair
of flows usually have similar packet timings to each other
(i.e. TCP packets and their ACK’s), they are not part of a
stepping stone attack.
• Too Short Flows: A successful stepping-stone attack is
expected to last long enough to allow the attacker exchange
sufficient information with the victim over an interactive
protocol. Hence, too short flows are highly unlikely to be
a part of a stepping-stone attack and therefore excluded in
the comparison process. To identify short flows, we used the
number of time-slots in which the flow was active, such that,
we excluded a flow in the search process if it was active in
less than 20 time-slots.
• Flows With Insufficient Packet-Timing Information:
In some cases, a flow might have no distinctive packet-
timing information, such as when downloading a file or
streaming a video etc. Usually such flows all have constant
number of packets at each time-slot and therefore appear
to be correlated with each other. Hence, such flows should
be excluded in the search process and treated separately.
To detect such flows in real-time, we simply checked the
fraction of the time-slots in which a flow is active during
its lifetime. We observed that, most of the flows having
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Figure 5. Detection rates for different chaffRate and maxDelay
values. The time slot length is 500 milliseconds and the packet-timing
summaries are 512 bit binary strings. As expected, increasing chaff rates
and delays reduces the detection rate.

insufficient packet-timing information were active more than
90% of the time-slots.

Detection Rate Results: In our experiments, we computed
the detection rate of the proposed scheme under various
maxDelay and chaffRate . Figure 5 plots these measured
detection rates, where we used 500 millisecond long time-
slots and 512-bit sketches. The duration of the correlated
flows were 60 seconds. It is observed that the proposed
scheme resists delays and chaff packets to some extent.
For instance, the algorithm detected 95% of the correlated
flow pairs when the maxDelay = 100 milliseconds and
chaffRate = 0.1. However, further increasing chaff rates
and delays decreases the detection rate, as expected since,
the packet-count vectors of correlated flows deviate from
each other as chaff rate and max delay increase.

Effect of Time-Slot Length: Time-slot length is an im-
portant parameter, which sets a trade-off between resistance
to delays and ability to distinguish between uncorrelated
flows. If the time-slot length was set too short, then even
very slight packet delays would result in packets drifting
into subsequent time-slots. As a result, packet-count vectors,
and therefore flow sketches, would change drastically even
under a slight packet delays. On the other hand, making the
time-slots too long would result in the packet-count vectors
of some uncorrelated flows being similar to each other. Our
experiments suggest that, 500 millisecond long time-slots
are an appropriate choice for our setting. Figures 5 and 6(a)
depict that, using shorter time-slots (i.e. 300 milliseconds)
weakens the resistance to the packet delays since detection
rate is observed to decrease more rapidly for increased
maxDelay in Figrue 6(a) than in Figure 5. On the other
hand, using longer time-slots i.e. 1000 milliseconds) makes
the sketches of uncorrelated flows similar to each other. As a
result, the 10−4 false alarm rate threshold becomes smaller
and therefore the detection performance decreases again, as
observed in Figure 6(b).

Effect of Sketch Length: Using short sketches is very
important for the proposed scheme to be scalable. However,

using too short sketches makes it harder to distinguish
between correlated and uncorrelated flows. The reason is
that, shorter sketches contains less information about the
packet-timings of flows, thereby yielding increased proba-
bility of the sketches of two uncorrelated flows being similar
to each other. More formally, when shorter sketches are
used, the distribution of the Hamming Distances between the
binary sketches of uncorrelated flows (Figure 4) will have
higher variance, thereby pushing the 10−4 false alarm rate
threshold towards zero and hence decreasing the detection
performance. The improvement of the detection rate with the
increased sketch length is observed in Figures 7(a), 5 and
7(b), where we used 256-bit, 512-bit and 1024-bit sketches,
respectively.

Effect of Correlated Flows’ Duration: It is expected that,
the detection rate increases as the duration of the correlated
flows increases. That is because, longer flows have more
packets and therefore their linear transform coefficients have
higher magnitudes. As a result, same amount of distortion
on packet-count vectors has less impact on the integer-array
sketches of longer flows, as discussed in Section III-A5.
Hence, sketches of longer flows are more resistant to timing
perturbations. This can be observed in Figures 8(a), 5 and
8(b), where we present the detection rates for correlated flow
durations 30, 60 and 90 seconds, respectively. Consequently
one can say that, the longer an attacker stays on-line, the
more likely the proposed scheme detects her attack.

V. LIMITATIONS AND POTENTIAL SOLUTIONS

High Chaff Rates: Although, stepping-stone attacks are
constrained by a maximum tolerable delay, in theory there
is no such constraint on chaff. That is, an attacker can
introduce as many chaff packets as she would like (as
long as the network is able to handle) in order to disrupt
the observed correlation between her flows. However, in
most cases, sending packets at an unusually high-rate might
expose the attack instead of concealing it. Nevertheless,
such cases are potential problems, not only for the proposed
scheme but for all timing-based flow correlation schemes
(i.e. link padding algorithms in the context of anonymity
networks [13][14][15]). To mitigate such cases, one needs
to identify flows with unusually high packet-rates and treat
them separately. If these cases are relatively rare, one can
afford to employ very complex algorithms to process them.
One possible solution is that, flows with unusually high
packet-rates can be tested by an active flow correlation
scheme [16] [17][18], which marks an ingress flow by
perturbing packet timings in a certain manner, and checks if
any of the egress flows contain the embedded mark.
Flow Splitting/Merging: To evade detection, an attacker
might employ more complex strategies, such as flow splitting
or flow merging. In flow splitting, an attacker creates multi-
ple egress flows sharing outgoing attack packets, instead of
using only one egress flow. Or similarly, in flow merging, an
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(a) Time-slot Length = 300 msec
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(b) Time-slot Length = 1000 msec

Figure 6. Effect of time-slot length, for 60 second
long correlated flows and 512 bit binary sketches.
Setting the time-slot length = 500 msec (Figure
5) performs better than both 300 and 1000 msec.
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(a) Binary Sketch Length = 256 bits
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(b) Binary Sketch Length = 1024 bits

Figure 7. Effect of sketch length for 60 second
long correlated flows and = 500 msec long
time-slots. It is observed that, the detection rate
increases with the increased sketch length.
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(a) Correlated Flow Duration = 30 sec

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max Delay (milliseconds)

D
et

ec
tio

n 
R

at
e

 

 

Chaff Rate 0%
Chaff Rate 10%
Chaff Rate 25%
Chaff Rate 50%

(b) Correlated Flow Duration = 90 sec

Figure 8. Effect of correlated flow duration
for = 500 msec long time-slots and 512 bit
binary sketches. It is observed that, increasing
flow duration increases the detection rate.

attacker sends attack packets to the monitored intermediate
node over multiple ingress flows and merge them into one
egress flow. To detect such cases, a stepping-stone detection
scheme should compare superpositions of several ingress
flows with superpositions of several egress flows for possible
correlations. Unfortunately, such kind of search will be very
costly since every possible combination of the flows have
to be tested. However, due to the linear transformation em-
ployed by the proposed scheme, the integer-array sketch of
the superposition of a set of flows is equal to the summation
of the sketches of those flows. This linearity property enables
quick and efficient computation of the binary sketch of any
given combination of flows. Hence, one can potentially com-
bine this linearity property with an appropriate optimization
technique, such as dynamic programming, gradient search
etc., to efficiently search for a small set of ingress flows
and egress flows which are collectively correlated with each
other. We leave the exploration of this issue as a future work.

VI. RELATED WORK

Stepping-Stone Detection: Staniford-Chen and Heberlein
proposed perhaps the first technique for the stepping stone
detection problem in [19]. The basic idea proposed was to
correlate two flows based on payload thumbprints. Zhang
and Paxson proposed a flow correlation algorithm based
on occurrence times of packet bursts and silence moments
called ON/OFF periods in [6]. The assumption is that

correlated flows switch from the OFF state to the ON state
at similar times. Yoda and Etoh proposed a similar timing
based algorithm in [8], where correlation was defined over
sequence number vs. time curves of flows. The idea was
that the curves of correlated flows should be close to each
other. Another timing based algorithm was proposed by He
and Tong in [20], where the authors formulate the stepping
stone detection problem as nonparametric hypothesis testing.
In [21],Wang et. al. use inter-packet delay information to
compute the correlation between two flows.

The techniques explained above are all robust against
packet delays and jitter to some extent. However, when
attackers insert chaff packets into flows, the correlation
mechanisms used by these schemes start to break down.
In [11], Donoho et. al. argue that attackers have maximum
tolerable delay constraints and the correlation between step-
ping stone flows can be detected regardless of chaff packets
if flows last long enough. Similarly, under a maximum
tolerable delay constraint, Blum et. al. present confidence
bounds on the stepping stone detection problem in [7].
Their algorithm is based on the difference of the number of
packets between two flows at a given time. This difference
is expected to be low for correlated flows even if there
are a few chaff packets. In [9] Zhang et. al. propose a
packet-timing comparison algorithm with special focus on
random delays and chaff. However, their algorithm compares



two flows in linear time in the number of packets. In [22]
Strayer et. al. proposed a State-Space algorithm similar to
the one used to identify wireless receiver/transmitter pairs.
The idea is to maintain a conversation probability matrix
(CPM) which shows the correlation between each flow pair
based on the probability that the observed packet is caused
a previously received packet on another flow. In [10], Wu
et. al. tried to improve the chaff resistance properties of [7].
However, they assume that the chaff is introduced only one
of the flows of a correlated flow pair. A similar timing-based
flow correlation method is presented in [23], where authors
identify Skype related correlated flows. In [24], Coskun
and Memon proposed a technique to efficiently identify
relay nodes in real time. However, their technique cannot
identify the actual relaying flows. As a completely different
approach, in [16], [17] and [18] authors propose an active
stepping-stone detection scheme based on watermarking.
The basic idea is to mark the timing information of ingress
flows, and search for the traces of those marks in the egress
flows. A similar watermarking technique is proposed in [25]
to track VoIP calls.
Data Stream Sketching: In general, data sketching tech-
niques can be viewed as linear projections of an input stream
on appropriate basis functions [1]. They are widely used to
answer efficient queries on streaming data such as rangesum,
heavy hitters, quantiles, inner product etc.,[2][26][3].
Robust Multimedia Hashing: The proposed technique
shows a resemblance to robust hashing schemes. They both
represent an input signal by a short array (robust hash),
which is resistant to small perturbations on the input. In
the context of multimedia signal processing, robust hash
functions are often used to identify and authenticate multi-
media contents (audio, video and image) in the presence of
perceptually preserving modifications such as compression,
minor filtering etc. [27, 28, 12].

VII. CONCLUSION

In this paper, we presented a novel stepping-stone detec-
tion scheme based on an online algorithm, which contin-
uously maintains sketches of network flows’ packet-timing
information from a stream of captured packets at the border
of a network. These sketches are then used to efficiently
identify correlated flows, since the correlated flows have sim-
ilar sketches. The proposed scheme computes flow sketches
very efficiently by a streaming algorithm, which performs a
few arithmetic operations for each packet. In addition, the
sketches of a pair of correlated flows remain similar, even
if the flows encounter various timing perturbations, thereby
allowing the proposed scheme detect the correlated flows
even under delays, jitter, chaff, etc to some extent. Finally,
using the fact that correlated flows have similar sketches,
the proposed scheme identifies correlated ingress/egress flow
pairs among n ingress and m egress flows in O(n+

√
nm)

time, as compared to known techniques, which requires

O(nm).
Our experiments verify that the proposed scheme is re-

sistant to chaff and packet delays to some extent. However,
there is still room for improvement. We observed in the ex-
periments that, when we use longer time-slots in order to be
more resistant to packet delays, the sketches of uncorrelated
flows start to exhibit some similarities, thereby negatively
affecting the detection performance. Shorter time-slots, on
the other hand, have limited resistance to packet delays.
To combine the advantages of both sides and potentially
improve the resistance to packet delays, we plan to use
randomly varying time-slot lengths. Meanwhile, we used a
fixed threshold when deciding if two flows are correlated
or not. However, using a different threshold for each pair
of flows, regarding several features, such as flow durations,
number of packets etc, will potentially improve the detection
performance. We leave the exploration of these improve-
ments as future work.
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