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ABSTRACT
There is a large body of research on scalable machine learn-
ing (ML). Nevertheless, training ML models on large, contin-
uously evolving datasets is still a difficult and costly under-
taking for many companies and institutions. We discuss such
challenges and derive requirements for an industrial-scale
ML platform. Next, we describe the computational model
behind Amazon SageMaker which is designed to meet such
challenges. SageMaker is an ML platform provided as part
of Amazon Web Services (AWS), and supports incremental
training, resumable and elastic learning as well as automatic
hyperparameter optimization.We detail how to adapt several
popular ML algorithms to its computational model. Finally,
we present an experimental evaluation on large datasets,
comparing SageMaker to several scalable, JVM-based imple-
mentations of ML algorithms, which we significantly outper-
form with regard to computation time and cost.
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1 INTRODUCTION
Machine learning (ML) has become an integral part of mod-
ern software systems. Unfortunately, training ML models
on large, continuously evolving datasets is still a significant
undertaking for many companies and institutions, especially
if ML is not their core competency. Building an industrial-
scale model training platform for such cases involves a set
of challenges, many of which are not addressed by current
systems available in academia and open source.

(i ) Support for incremental training and model freshness:
It is highly uncommon to encounter large static datasets. In
most cases, data keeps being generated constantly, which
is often addressed with an unwelcome trade-off between
training cost and accuracy. Training on a large subset of the
data produces accurate models but can become extremely
costly and slow, while training on new, small updates of the
data (e.g., the last day) is cheaper but might not lead to very
accurate results. Therefore, industrial ML platforms have to
support incremental model training to regularly and cost-
efficiently update existing models and to quickly provide
accurate and ‘fresh’ models.

(ii ) Predictability of training costs: for large amounts of
data, customers need to be able to roughly estimate in ad-
vance how much a training job would cost and how long
it would run for. It is difficult to estimate the cost ahead of
time for many scalable systems, which do not support incre-
mental learning with linear update times or have irregular
performance drops for high-dimensional models [5].

(iii ) Elasticity and support for pausing and resuming train-
ing jobs: large-scale ML scenarios often result in imbalanced
workloads, where data scientists spend several days without
running a single job (while they are collecting data or writing
code) and then they launch several large concurrent training
jobs on hundreds of machines. They also may want to pause
and resume such jobs, e.g., for hyperparameter tuning or if
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their compute bandwidth has irregular limitations. A cloud
ML platform should reduce the operational complexity of
such scenarios.

(iv ) Furthermore, an industrial-scale ML platform must
be able to handle ephemeral data, as some data streams like
network traffic or video streams are never meant to be stored,
which makes ingesting and learning on such data challeng-
ing.

(v ) Finally, anML platformmust automate hyperparameter
optimization and model tuning as much as possible. These
tasks are already tedious even for small use cases, let alone,
for large scale machine learning scenarios. Automating this
part of the platform is crucial for driving down training costs
and supporting non-ML expert users.
In this paper, we present the computational model (Sec-

tion 2) and algorithms (Section 3) of Amazon SageMaker , a
system for scalable, elastic model training on large streams
of data, available as part of Amazon’s cloud offerings.1 We
choose a streaming model to meet requirements like linear
update time, pause/resume capabilities and elasticity. Operat-
ing in such a constrained setting is mathematically complex.
For example, consider the task of computing the median
of a stream of numbers. The best possible approximation
for finding quantiles (e.g., the median) in streams was only
recently discovered [18], and the resulting algorithm is sig-
nificantly more complex than offline approaches [14]. We
argue, however, that the advantages of a streaming model
are so significant that they are well worth the additional com-
plexity: The cost of processing additional data is independent
of the size of the input data, the memory footprint of the
algorithms is fixed, and ideally, such a solution exhibits close-
to-linear scalability for both runtime and compute costs of
model training.
We outline some design choices for SageMaker’s imple-

mentation in Section 4, refering to its use ofApacheMXNet [10]
and themaintenance of shared state via a parameter server [21].
We experimentally evaluate our system against popular JVM-
based solutions for scalable model training in Section 6. In
summary, this paper provides the following contributions:

• We discuss challenges and requirements for building an
industrial-scale elastic ML platform (Section 1).
• We describe the computational model (Section 2) and se-
lected algorithms of SageMaker , which support incremen-
tal, resumable and elastic learning, as well as automatic
hyperparameter optimization (Sections 3 & 4).
• We compare SageMaker to several scalable, JVM-based
algorithm implementations (Section 6), which we signifi-
cantly outperform with regard to computation time and
cost.

1https://aws.amazon.com/sagemaker

2 COMPUTATIONAL MODEL
SageMaker assumes distributed streaming data and a shared
model state. The combination of a streaming model and
shared state enables a convenient and simple abstraction for
distributed learning algorithms. Our runtime is in charge
of managing the state including weight updates, synchro-
nization, reading inputs, writing outputs, logging, reporting
metrics, containerization, serialization, deserialization, and
many other tasks.
As a result, large scale learning algorithms can be inte-

grated by implementing only three functions, namely, ini-
tialize, update, and finalize. (i ) initialize: sets up
an initial (often empty) state such that training can begin.
(ii ) update: receives a data stream and the state, and up-
dates the state accordingly. At the system level, the update
function is simultaneously executed on many machines in
parallel, and must be implemented such that the updates
on partitions of the input stream can be merged together.
(iii ) finalize: receives the state (and potentially configu-
ration parameters) and outputs the final result of the com-
putation (typically an ML model).2 This abstraction allows
one to optimize a wide of variety machine learning objective
functions by writing only three simple functions while still
enjoying all the benefits of a massively distributed, stream-
ing, production-ready, model training platform.
Example. We illustrate our computational model via the
example algorithm of computing the median of a stream of
numbers in a distributed fashion. Recall that the median of
a set of points x1, . . . ,xn is equal to argminz

1
n
∑n

i=1 |xi − z |.
Applying stochastic gradient descent (SGD) to minimize this
convex function gives Algorithm 1: We maintain a guess for
the median, and update this guess after every observed item
(we increment our guess if it is smaller than the observed
item and decrement it otherwise).
The initialize function (Line 1) initializes shared vari-

ables in the global state object. (Note that this function
will not be called when we resume a previously paused
job, as there is already an existing state). The update func-
tion (Line 4) updates the state in response to a stream of
mini-batches of data. In our example, we constantly up-
date the state (i.e., the estimated median) at the end of each
batch (Line 14), as well as the number of observed data
items (Line 13). Note that the state.push operation does
not override shared variables in the state. Instead, it invokes
a server-side aggregation function, which adds the pushed
value to the global value in this case. Our runtime ensures
that the finalize function (Line 16) is only called after all
workers have finished iterating over the data. Thereby, we
ensure that the result of the state.pull invocation (Line 17)

2This computational model is similar to algebraic abstractions for distributed
aggregation functions in parallel databases [9, 38].
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Algorithm 1: Distributed computation of the median
via SGD.
1 function initialize(state):
2 state.initialize(‘median’, 0) \\ first guess is 0
3 state.initialize(‘n’,0) \\ number of items seen

4 function update(state, data_stream, synchronized):
5 foreach mini_batch in data_stream do
6 current_median = state.pull(‘median’)
7 n = state.pull(‘n’)
8 inc = 0
9 batch_size = 0

10 foreach item in mini_batch do
11 inc += 1 if item > current_median else −1
12 batch_size += 1
13 state.push(‘n’, batch_size)
14 state.push(‘median’, inc / sqrt(n + batch_size))
15 if synchronized then state.barrier()

16 function finalize(state):
17 return state.pull(‘median’)

reflects all updates. Our system additionally supports a bar-
rier function on the state object (Line 15), to allow the
algorithm designer to control the synchronicity of the com-
putation (e.g., to enable asynchronous variants of SGD).

3 ALGORITHMS
While deep learning approaches [1, 10, 33] have become
increasingly popular in recent years, there is still a huge
demand for classic, well-understood ML algorithms, which
drive mission-critical ML systems like click prediction in on-
line advertising [29]. We choose algorithms3 that are widely
used and adapt well to a streaming scenario:
Linear Learner. The linear learner algorithm is designed
to solve regression or classification problems. We learn a
corresponding linear model via stochastic gradient descent.
A special feature of our algorithm design is its support for
the simultaneous exploration of different training objectives
by training multiple models in parallel.
Factorization Machines. A factorization machine [23, 35,
36] is a general-purpose supervised learning algorithm for
both classification and regression tasks. It is an extension
of a linear model that is designed to capture interactions
between features within high dimensional sparse datasets
parsimoniously. We learn factorization machines via SGD for
both classification and regression problems in SageMaker .

3The full list of integrated algorithms is available at https://docs.aws.amazon.
com/sagemaker/latest/dg/algos.html

K-Means Clustering is an unsupervised algorithm for clus-
tering a dataset into k groups. We implement a streaming
variant of k-means, which combines ideas from stochas-
tic/EM optimization [25, 40], coresets [11, 13] and online
facility location [24, 42]. In our experience, previous stream-
ing solutions are either impractical in terms of runtime or
provide a significantly less accurate solution, compared to
multi-pass solutions such as Lloyd’s iteration [25] combined
with k-means++ [2] or k-means∥ [3] initialization.
PrincipalComponentAnalysis (PCA) is an unsupervised
algorithm to reduce the dimensionality of a dataset while
still retaining as much variance as possible. We design a
deterministic version of PCA for datasets with a moderate
number of observations and features, which requires O (d2)
memory, with d being the input dimension. Additionally, we
design an approximate version that applies random projec-
tions to reduce the memory requirements toO (kd ), where k
denotes the number of required components.
Neural Topic Model (NTM). Our neural topic model is an
unsupervised algorithm that learns latent representations of
large collections of discrete data, such as a corpus of docu-
ments. We decided to base our algorithm on the variational
autoencoder [31], to achieve fast inference compared to clas-
sic alternatives, which require iterative computations as in
variational inference or Gibbs sampling.
Time Series Forecasting with DeepAR is a probabilistic
forecasting algorithm based on recurrent neural networks [12].
In contrast to other popular time series forecasting algo-
rithms like [15], DeepAR learns a single (global) model [16]
over a collection of time series and thereby addresses the
class of operational forecasting problems often encountered
in enterprise applications [8, 17].

4 IMPLEMENTATION
Customers of AWS SageMaker are interested in reducing the
running time and dollar cost of training irrespective of the
number and types of machines used under the hood. Our sys-
tem is therefore designed to take advantage of multiple EC2
instance types, to support modern hardware like GPUs, and
to scale out model training across many machines (Figure 1).
Execution onModernHardware. In order to operate across
CPUs and GPUs seamlessly, most algorithms in SageMaker
use the MXNet [10] library as an interface to the underlying
hardware. MXNet represents ML algorithms via a computa-
tional graph of tensor operators, optimizes this graph (e.g, to
re-use allocated memory), assigns the operators to devices,
and efficiently executes the computation in parallel.
Distributed Learning and State Management via a Pa-
rameter Server. Distribution is achieved via a parameter
server which maintains the shared state of all the machines
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Figure 1: System design: workers continuously learn
on streaming data (using MXNet-based algorithms)
while shared state is maintained via a parameter
server.

participating in training. The parameter server is designed
for fast update speeds via asynchronous communication
and allows us to loosen the consistency of parameter up-
dates. Note that the tradeoff space between update consis-
tency and convergence speed is well explored for ML work-
loads [21, 22, 32, 44]. We implement the shared state ab-
straction as well as the server-side aggregation functions
required for our computational model (outlined in Section 2)
via MXNet’s parameter server called KVStore [10].
ModelAbstraction&Expressive State.We provide amodel
abstraction for the outputs of training algorithms to enforce
common behavior among the different ML models. A model
must implement two functions: (i ) the score function eval-
uates a model using a metric on a dataset, and is used for
debugging and hyperparameter optimization (HPO). (ii ) The
function evaluate receives a batch of data and computes the
output of the model. Note that this output is model specific,
and can be a single number representing a predicted class, a
vector in the case of dimensionality reduction or a complete
embedding matrix.

We additionally design our algorithms to maintain an ex-
pressive state object out of which many different models can
be created. Our state for k-means for example acts like a
core set, and can be used to solve k-means for any k ≤ kmax
without retraining. Similarly, k-nearest-neighbor models4
(not covered in this paper) with different values for k can be
fitted on the corresponding state without retraining. More-
over, we apply ‘model packing’ [39] in the state object of the
linear learner, which means that it maintains a collection of
differently parameterized linear models rather than a single
model.

4https://docs.aws.amazon.com/sagemaker/latest/dg/k-nearest-neighbors.
html

Model Tuning andHyperparameterOptimisation. Typ-
ical hyperparameter optimisation workloads comprise of
several training jobs that are run in parallel with different
hyperparameters to determine the best configuration, which
can quickly become tedious and costly. The pause-resume
capabilities of our streaming model enable a couple of bene-
ficial techniques for HPO workloads. Users can for example
add more data to their model every day rather than having
to retrain on the history. Moreover, the combination with
the ability of our models to produce early results allows for
‘multi-fidelity’ HPO - instead of fully training N models,
users can start training, say, 20N models, and stop those that
do not perform well early-on.

5 RELATEDWORK
Scalable machine learning has been in the focus of the aca-
demic community in the last years. Many different systems
have been proposed, ranging from ML on map-reduce-like
systems [7, 30], to specialised systems [26, 44] and parameter
servers [21, 22, 39]. In recent years, deep learning engines,
such as Tensorflow [1], MXNet [10] or Pytorch [33] have
become the dominant choice.

Putting ML applications into production incurs many data
management challenges [8, 19, 34, 37, 41], and recent efforts
focus on systems formanaging the end-to-end lifecycle inML
like the Tensorflow Extended Platform [4] or SystemDS [6].

6 EVALUATION
We compared SageMaker against several JVM-based solu-
tions for scalable machine learning. Namely, popular5 algo-
rithms fromApache SparkMLlib 2.2 [30] andMallet 2.0.6 [28].
We report the AWS instance types leveraged for each

experiment individually. Note that we use different instance
types based on the ability of the systems to leverage modern
hardware (e.g., in contrast to SageMaker , MLlib does not
make use of GPUs). As SageMaker has been designed to
enable scalable, cost-effective machine learning in the cloud,
we evaluate the majority of our experiments with respect
to the billable time and cost in dollars for solving an ML
problem.
Linear Learner. We compare SageMaker’s linear learner
to MLlib’s logistic regression implementation on two clas-
sification tasks involving 30GB of web-spam and web-url
classification data. We repeat the experiment leveraging 10,
20, 40 and 80 m4.xlarge instances for MLlib, and 10, 20 and
40 m4.xlarge instances for SageMaker (we stopped at 40, as
SageMaker already provided an extremely low runtime). We
ensure that both approaches achieve the same accuracy on
the task, and plot the resulting computing cost and machine
time in Figure 2a.
5https://spark.apache.org/powered-by.html

https://docs.aws.amazon.com/sagemaker/latest/dg/k-nearest-neighbors.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-nearest-neighbors.html
https://spark.apache.org/powered-by.html


5 10 15 20 25
billable time (min)

0.4

0.6

0.8

1.0

co
st

(d
ol

la
rs

)

SM (url)

SM (spam)

MLlib (url)

MLlib (spam)

(a) Learning a linear classi-
fier onweb spamandurl data
(30 GB) with varying num-
bers of machines.

2 4 6 8
billable time (hours)

60

80

100

120

co
st

(d
ol

la
rs

)

50 40 30
20 machines

10

(b) Scaling behavior of the
factorization machines
implementation on a 1TB
click prediction advertising
dataset.

20 40 60 80
billable time (min)

0

5

10

15

20

co
st

(d
ol

la
rs

)

SM (k=100)

SM (k=500)

SM (k=1000)

MLlib (k=100)

MLlib (k=500)

MLlib (k=1000)

(c) K-Means clustering of the
GDelt dataset (372 GB) with
varying numbers of clusters
and machines.

0 50 100 150 200
# topics

4000

6000

8000

10000

12000

p
er

pl
ex

it
y

SM

Mallet

(d) Perplexity scores for dif-
ferently sized topic models
on a news dataset with 200K
documents for SageMaker
and mallet.

Figure 2: Comparison of SageMaker against several scalable, JVM-based algorithm implementations for different
ML use cases. SageMaker is able to train models both faster and more cost-effective in the majority of cases.

We find that SageMaker is up to 8-times faster than MLlib,
and can provide results two to three times cheaper when
using the same amount of training time.
Factorization Machines. Next, we evaluate the scalability
of our factorization machines implementation. We do not
compare against MLlib in this setting, because it does not
contain an implementation of this algorithm. We train a clas-
sifier on a 1TB click prediction dataset from the advertising
domain, and evaluate a weak-scaling scenario (scaling the
hardware but not the workload) using 10, 20, 30, 40 and 50
m4.xlarge instances.

The results are shown in Figure 2b, and we find that Sage-
Maker exhibits a close-to-linear scaling behavior (indicated
by a very modest increase in computation cost) when in-
creasing the cluster size in this setting.
K-Means. We evaluate SageMaker’s k-means implementa-
tion on the GDELT news dataset [20] (372GB), and compare
it against MLlib’s streaming k-means implementation (based
on [40]). We vary the number of clusters k between 100,
500 and 1000, and leverage 4, 8 and 12 instances for the ex-
periments. Note that we use m4.xlarge instances for MLlib
(which does not make use of GPUs) while SageMaker runs
on p2.xlarge instances, leveraging the graphics card via
MXNet.
We plot the results in Figure 2c, and observe that Sage-

Maker’s implementation is up to 10 times faster and signifi-
cantly cheaper while achieving a sum-of-squared-differences
score that is 5%-8% lower than that of MLlib, depending on
the value of k .
Finally, we run two experiments to measure the predic-

tion quality of our neural topic model (NTM) and time
series forecasting algorithm (DeepAR). We measure the
perplexity of NTM for a growing number of topics on a 200K-
document news dataset with 100K-word vocabulary from

the New York Times corpus6, and compare it to the perplex-
ity achieved by the Mallet library [28] in Figure 2d. We find
that NTM achieves lower perplexity scores than Mallet in all
cases where the number of topics is larger than five. Next,
we compare DeepAR (with default settings) to the winning
solution [43] of the recent M4 forecasting competition [27].
We find that DeepAR achieves state-of-the-art perfor-

mance (sMAPE of 0.12, compared to 0.114; MASE of 1.50
compared to 1.54; owa of 0.84 compared to 0.82; MSIS of 12
compared to 12.2) while exhibiting an inference speed that
is comparable to conceptually much simpler R forecasting
packages [15].

7 CONCLUSION
We discussed the challenges in building our ML platform
SageMaker . We described its computational model, and gave
an overview of how to implement several common ML algo-
rithms with support for online learning, automatic hyperpa-
rameter optimization, and elastic learning. We experimen-
tally evaluated our platform on large datasets and showed
the performance gains achievable over existing JVM-based
scalable algorithm implementations.
A limitation of specialised systems like ours is that they

often have to execute preprocessing workloads on a sepa-
rate system, which may reduce some of their performance
benefits.
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