
Mitigating SMS Spam by Online Detection of

Repetitive Near-Duplicate Messages

Baris Coskun

AT&T Security Research Center
New York, NY
baris@att.com

Paul Giura

AT&T Security Research Center
New York, NY

paulgiura@att.com

Abstract—Short Message Service (SMS) spam is in-
creasingly becoming a problem for many telecommu-
nication service providers. Not only do SMS spam
messages use mobile network resources abusively, but
also in many cases they represent malware propagation
vectors for mobile devices. In this work, we propose
a network-based online detection method for SMS
spam messages. The proposed scheme uses robust text
signatures to identify similar messages that are sent
excessively in the SMS platform and is robust against
slight modifications in SMS spam messages. Addition-
ally, the method uses a fast online algorithm which can
be deployed in large carrier networks to detect spam
activities before too many spam messages are delivered.
It does not store SMS message contents, therefore it
does not compromise the privacy of mobile subscribers.

I. Introduction

Like every electronic messaging platform (i.e. Email,
Instant Messaging, Web Forums, etc.), Short Message
Service (SMS) in mobile networks is plagued by unsolicited
bulk messages called spam. In fact, SMS spam constitutes
20 − 30% of Asian markets, such as India and China
[1]. SMS spam can be used for various purposes, such
as unsolicited advertising, phishing, malware propagation,
tricking subscribers into calling premium numbers, etc.,
which make SMS spam not only annoying but also po-
tentially hazardous to subscribers’ security and privacy
[2]. Additionally, SMS spam raises a particular financial
concern as it may incur additional wireless service charges
to its victims due to delivered messages. Therefore it is
crucial to detect and stop SMS spam messages before they
are delivered to their destinations.

Mobile Network Operators (MNOs) have deployed var-
ious SMS spam mitigation techniques, such as mes-
sage volume-based methods and message rate limitation,
content-based filtering, subscriber feedback-based meth-
ods, sender reputation-based schemes, distributed honey-
pot and collaborative data sharing techniques and solu-
tions that are based on senders’ social networking char-
acteristics [3] [4] [5] [6] [7]. Nevertheless, spammers are
continuously adopting more advanced techniques to evade
such defenses. Some of such evasion techniques include; i)
sophisticated message modification to evade content-
based (signature-based) spam filters; ii) slow attacks

sending spam in smaller batches to evade volume-
based spam detection methods; iii) sender number vari-
ation to evade reputation and social networking based
schemes [1]. Furthermore, with the advent of smartphones
and consequently mobile malware, in the future, spammers
are likely to employ thousands of infected mobile devices
(i.e. mobile botnets) to send spam messages thereby allow-
ing spammers to employ much more sophisticated evasion
techniques.

To keep up with this worrying trend of SMS spam,
mitigation techniques should be evolving as well by con-
stantly adding new techniques and algorithms to the
arsenal. Motivated by this, we propose an online algorithm
which efficiently detects repetitive transmission of similar
messages to identify potential SMS spam messages. Our
intuition is that, an SMS spam campaign essentially tries
to deliver a certain information to millions of subscribers
in the form of SMS messages, regardless of whether they
originate from a single account or thousands of accounts.
Therefore, messages of a certain SMS campaign cannot
differ much, although they may be slightly different from
each other. More specifically, since each message of a spam
campaign is relatively a short text conveying essentially
the same information, there is very little room for a
spammer to create a substantially different content for
each spam message.

Based on these observations, our proposed scheme mon-
itors an SMS platform from a central vantage point within
the mobility network and detects potential spam cam-
paigns when it sees unusually high number of messages
with similar content being transmitted. Note that the SMS
platform employs store and forward architecture which
allows monitoring all traffic from a central location [8].
In our algorithm, we use robust content signatures to tell
whether the transmitted messages have similar contents.
The basic idea is that, if two messages are similar, then
certain portions of their content will exactly match with
high probability. More specifically, if we consider each mes-
sage as a set of blocks, i.e. short sequences of subsequent

characters, then similar messages will have several blocks
in common with high probability. As a result, one can
detect SMS spam campaigns, when one observes a certain
set of blocks being transmitted repeatedly within the SMS

platform.
With this work we make the following key contributions:

i)We propose an online algorithm that can detect spam
campaigns before they send substantial number of spam
messages. ii)The proposed algorithm is robust against
sender number variation. It can detect spamming cam-
paigns which can potentially employ thousands of infected
mobile devices that send spam. iii)It is robust against
sophisticated message modification. It doesn’t require the
spam messages to be exactly the same. iv)The proposed
algorithm is efficient and can be deployed in large car-
rier networks. It performs simple constant time operation
for each message as it arrives at the monitoring center.
v)Finally, the proposed method preserves user privacy
since message contents never leave the SMS platform.

II. Detection Method

The basic idea of the method is to maintain an approxi-
mate count of message contents to see whether there is an
abnormally high number of similar messages transmitted
over a short period of time. For this purpose we use an
efficient data structure called Counting Bloom Filter. In
this section we elaborate this idea and formally introduce
our proposed solution.

A. Problem Formulation

Each SMS message can be represented as a set of
blocks, which are small chunks of consecutive characters
within a message. Two transmitted messages are similar
if they share substantial portion of their blocks. More
specifically, we consider an SMS message is defined as a set
M = {b1, . . . , bm}, where b1, . . . , bm represent continuous
blocks of characters. To measure similarity, s, between two
messages M and M ′, we use Jaccard similarity metric,
defined as follows:

s(M, M ′) =
|M ∩ M ′|

|M ∪ M ′|
(1)

Using this, we say that two messages M and M ′ are
similar, and write M ∼ M ′, if s(M, M ′) ≥ s0, where
s0 is the similarity threshold. Note that the number and
diversity of blocks for each message has high impact on the
similarity metric. Therefore, the method to create message
blocks is important. We discuss how we select the blocks
of a message later in this section. Having defined above
the message representation and the similarity metric, we
can formulate the problem as follows:

Consider i SMS messages M1,M2,....,Mi received at the
SMS monitoring center. For the next received message,
Mi+1, we try to answer whether there were more than t

already received messages similar to Mi+1.
It is possible to find an exact solution to this question by

storing and processing every observed message. However,
this would be inefficient and limiting both in terms of
memory and computational complexity, especially when
the number of messages is very large. In this work we try
to find an approximate answer to this question by using

counting Bloom filters, which are described in the next
section.

B. Counting Bloom Filters

A standard Bloom filter is a space-efficient probabilistic
data structure used for representing a set in order to sup-
port membership queries [9]. A Bloom filter is identified
by a bit array of size m with all the bits initially set to 0,
and k independent hash functions with the range {1,...,m}.
When an element of a set is inserted into the Bloom filter,
it is first hashed with all k hash functions and all the
corresponding zero bits in the bit array are flipped to 1. If
one of the corresponding hash functions bits it already set
to 1, then a collision occurs and the bit is not changed.
When an element is tested for membership in a set, the
Bloom filter is queried in constant time as follows. First,
the element is hashed with all k hash functions and all
the corresponding bits in the bit array are checked. If all
bits checked are 1 then we say the element was inserted
in the Bloom filter with some probability, called the false

positives rate, introduced because of the collisions in the
insertion process. If at least one corresponding bit is 0
then we know precisely that the element was not inserted
in the Bloom filter. Thus, a Bloom filter has no false
negatives, and space-efficiency is achieved at the cost of
a small probability of false positives.

In our method we use a variation of the standard Bloom
filter, called counting Bloom filter [10] [11], in order to
efficiently detect an abnormal number of similar messages
sent within a predefined time period. Essentially, a count-
ing Bloom filter uses an array of counting bins rather
than a single bit for each array position, representing
the number of matches that are encountered for each
corresponding position. In the rest of this paper the term
Bloom filter always refers to counting Bloom filter unless
stated otherwise.

C. Method Description

We base our algorithm on two fundamental character-
istics of SMS spam messages: 1) many similar spam mes-
sages are sent over relatively short time intervals, 2) the
spammer affords only to slightly modify the representation
of similar messages, otherwise the content transmitted
would get highly distorted, therefore spamming would not
be serving its purpose. Suppose there are N messages
sent in the network, then the set of all the blocks in
the transported messages is M =

⋃N

i=1
Mi. We will use

counting Bloom filters to insert the blocks of all the
messages. A counting Bloom filter is defined as an array
of bins B = [B[1], . . . , B[m]] and a set of hash functions
F = {F1, . . . , Fk}, with each hash function having the
range {1, . . . , m}. We use a counting Bloom filter for each
time period (e.g., minute) when the messages are recoded
in the system. As such, we have the time window T1 for
counting Bloom filter B1, T2 the time window for Bloom
filter B2, etc. We assume the size of all the counting

Bloom filters is m bins. For each bin, B[i], we maintain
a bin threshold t[i] representing the maximum counter
value allowed for that bin in a counting Bloom filter. The
threshold value is based on the initial observed data. The
bin threshold purpose is to capture expected number of
occurrences for each block during a time window, thereby
enabling us to detect sudden changes in the sending rate
of similar messages. Our SMS spam campaign detection
method works as follows:

• Initialization: Insert messages M1, . . . , Mi into
counting Bloom filters B1, . . . , Bj corresponding to
time periods T1, . . . , Tj. Then compute bin thresh-
olds, t[1], . . . , t[m]. Bloom filter Bj is the current filter
corresponding to time period Tj. Note that typically
i >> j.

• Step 1: Upon receiving of new message Mi+1, par-
tition new message into blocks. Suppose the message
yields z blocks. Compute hashes each of these z blocks
and check if incrementing the corresponding bin coun-
ters in the Bloom filter exceeds the corresponding bin
thresholds. If the bin thresholds are exceeded for more
than s0z of the blocks, then raise an alarm and mark
the message as potential spam.

• Step 2: When the time slot for Bloom filter Tj expires
create a new empty counting Bloom filter Bj+1 for
new time period Tj+1. Discard Bloom filter B1 for
time period T1 an update the bin thresholds to include
values from filter Bj .

Blocks Selection:
A trivial method to create blocks for an SMS message M

is to select a block size z and consider the first block
b1 containing the first z characters, block b2 the next
z characters, and so on. However, this simple blocking
scheme does not capture the consecutiveness of the blocks.
That is, even two messages have exactly the same blocks
and their similarity is 1 (e.g. perfect similarity) based on
the metric defined in Equation 1, the arrangement of the
blocks might be different, the content of the messages
being completely different. In [12] authors suggest to use
Rabin fingerprinting and shingling in order to solve the
consecutiveness problem when blocking network traffic
payload. The Rabin fingerprinting methods select the
boundaries of the blocks by computing a rolling polyno-
mial function over the content itself. Shingling methods,
on the other hand, solve the consecutiveness problem by
appending to each block a small overlap of the next block.
Since SMS messages are essentially short strings of text
and since Rabin fingerprinting methods don’t guarantee a
minimum number of blocks for a given message size, we
chose to use a shingling variation for building messages
blocks called n-grams selection. The n-grams of a text
message are all the substring of size n for that message.
They can be enumerated by getting the first substring of
size n, and then shifting one position the start and the
end of the new substring until reaching the end of the
message. In this way adjacent blocks will always overlap

and the consecutiveness problem is addressed.
Adversarial Model:
Given two messages M and M ′ our goal is to detect if
the messages have similar meaning by using the Jaccard
similarity function defined in Equation 1. The spammer’s
goal, on the other hand, is to avoid detection by slightly
altering each spam message. We quantify the resilience
of the proposed detection scheme by the edit distance
d between two messages that the similarity metric can
withstand. The edit distance between M and M ′ is defined
as the number of operations (replace, insert, delete) needed
to transform message M into M ′. If message M has z

characters, and n is the size of n-grams, then there are
at most z − n different blocks in the message. Suppose a
spammer wants to create a message M ′ with edit distance
d starting from M . Then, for each modification of a
character c in M , she will spoil all the n-grams that contain
c, that is n blocks. Thus, the maximum number of different
blocks that can be spoiled after d operations is n·d. Hence,
the fraction of blocks that can determine the similarity
is d·n

z−n
. Therefore, in order to withstand d modifications

from message M with size z, to message M ′, the similarity
threshold parameter has to satisfy:

s0 < 1 −
d · n

z − n
(2)

For instance consider two messages with z = 100 charac-
ters, differing at d = 10 positions. In order to declare these
two messages being similar when the block size is set to
n = 5, the similarity threshold should be s0 < 1− 10·5

100−5
≈

0.53. However, notice that this represents the worst case
and in practice d = 10 different characters may not spoil
all 10 ·5 = 50 blocks. Therefore setting s0 greater than it’s
worst case bound will still yield sufficient detection results
as we will discuss in the next section.

III. Experiments

A. Data Set

In our experiments we use a dataset of 104,809 YouTube
[13] comments from different YouTube videos. We first
collected the data by crawling YouTube comments using
YouTube public API, starting from few seed videos. Then,
we preprocessed the raw data to get a data set which
is closer in properties to the real SMS data. We used
publicly available YouTube data for two main reasons:
a) the data is widely accessible and there are no privacy
concerns associated with accessing it, and b) the data
characteristics are very similar to real SMS data (i.e. short
strings of text generated by users), thus making YouTube
data very suitable for simulating SMS traces.

B. Preprocessing

After collecting the YouTube videos comments, we first
partition each comment in short sets of 140 octets (160
characters) keeping also the trailing block whose length
could be smaller than 160 characters. If the comment is

not at least 140 octets long then we consider the entire
comment as an SMS message. Based on the instances
of SMS spam messages that we observed, we concluded
that a spammer needs to send a message with at least
a minimum number of characters in order to increase
the chances of communicating the message across to the
spam victims. Thus, in our experiments we selected the
minimum message size to be 50 characters. Therefore, from
the list of all the messages collected as described before,
we consider only those whose length is larger than 50
characters. Finally, we remove the symbols in the messages
that don’t carry any information such as spaces, multiple
punctuation signs, etc. For cases when we have a repetitive
punctuation sign (e.g. !!!!, ???, etc) we maintain a single
occurrence of such a sign.

C. Block Size Selection

Message blocks size is an important parameter for the
accuracy of our spamming campaign detection method.
Basically, using too small blocks will result in high ro-
bustness against slight message modifications but will
also cause unrelated messages appearing very similar to
each other according to the similarity metric described in
Section II. On the other hand, too large blocks will suc-
cessfully distinguish unrelated messages from each other
while sacrificing robustness against message modifications.
Based on this observations, we select the block size param-
eter as the smallest value that has the potential to yield
the smallest similarity metric between any two random
messages.

To determine such a block size value, we design an
experiment to assess the effect of the block size on the sim-
ilarity metric of any two messages selected at random. In
the experiment, we randomly select 1000 pairs of messages
and compute the similarity metric for each pair for each
block size, from 1 to 20 characters. Based on the results of
this experiment, we select the block size parameter to be 5,
which is the smallest value that yields very small similarity
metric between any two random messages. We use this
value for the rest of results reported in our experiments.

D. Detection and False Positive Results

In this section we investigate detection rate and false
positive probability of the proposed method under dif-
ferent parameter settings. To assess these probabilities,
we first split our dataset into two parts for training and
testing. We use the training part to establish Bloom
filter bin thresholds. Basically we insert NM randomly
selected messages from the training set into NBF Bloom
filters, each using k = 2 hash independent functions.
During this process, we randomly pick messages without
replacement in order to make sure that each message is
used only once and each Bloom filter has different sets of
messages. Once we insert the training messages into Bloom
filters, we first compute the average value for each bin as
B[i] = 1

NBF

∑NBF

j=1
Bj [i], where i is the bin number and Bj

is the jth Bloom filter. Then we set the threshold value for
each bin as t[i] = max(B[i], 1), which makes all threshold
values at least 1, thereby ensuring that a spam campaign
must have at least two similar messages in order to be
classified as a spam campaign. Otherwise, the proposed
scheme would potentially classify previously unseen single
messages as spam.

As for testing, we use two Bloom filters, one for de-
termining detection rate and one for determining false
positive rate. We insert NM randomly selected messages,
again without replacement, from the testing data into the
first Bloom filter representing the case where there is no
spam activity. To represent spam activity, on the other
hand, we first pick a random message from the training set
as the spam seed. Then we insert NS different variations of
the seed message into the second Bloom filter. We generate
different spam variations by substituting d characters
at random positions of the seed message with random
characters. Notice that d is essentially the edit distance
between different variations of the spam messages and the
seed spam message. After inserting spam messages, we
then fill the rest of the second Bloom filter with NM − NS

randomly selected messages. As a result, we obtain two
Bloom filters with NM messages, one containing a spam
activity and one not.

To test the detection capability of the proposed scheme,
we check a random variation of the seed spam message
against the second Bloom filter, which contains previously
inserted spam messages. If the fraction of blocks, whose
all corresponding bins exceed the corresponding threshold
values, is greater than s0, we declare the test message as a
spam message as it is evident that messages with similar
contents have been previously observed. To compute the
detection rate, we repeat this procedure 1000 times. To
test the false positives, on the other hand, we check a
randomly selected message against the first Bloom filter,
which contains no spam activity. Again we repeat this
procedure 1000 times.
Detection Rate: We present detection rate for different
Bloom filter sizes and different message rates in Figure 1.
For this figure, we use NBF = 3 Bloom filters for training
and we set detection threshold to s0 = 0.7. We also fix
number of spam to (NS = 50) and spam edit distance to
(d = 10). We make several observations in Figure 1. First
of all detection rate tends to decrease as the number of
messages increases. This is expected since the number of
spam messages is constant (i.e. NS = 50) and it becomes
harder to pick up the traces of spam activity as the number
of messages in the background increases. We also observe
that the detection performance improves drastically when
we increase the Bloom filter size. More specifically, for
Bloom filters larger than 500, 000, the proposed scheme
reaches almost 100% detection rate even when only 5 spam
messages are blended in total of 10, 000 SMS messages.
This is due to the fact that larger Bloom filters have
less collision rates–i.e. two different blocks being mapped

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
R

at
e

No of Messages (N
M

)

BF Size=1x104

BF Size=5x104

BF Size=1x105

BF Size=5x105

BF Size=1x106

Fig. 1. Detection Rate for
different Bloom filter sizes and
different number of messages
(NM), where NBF = 3, NS =
50, d = 10 and s0 = 0.7

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
R

at
e

No Of Spam (N
S
)

BF Size=1x104

BF Size=5x104

BF Size=1x105

BF Size=5x105

BF Size=1x106

Fig. 2. Detection Rate for
different number of spam (NS)
and different Bloom filter sizes,
where NBF = 3, NM = 10, 000,
d = 10 and s0 = 0.7

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
R

at
e

No Of Spam (N
S
)

d=0
d=5
d=10
d=20

Fig. 3. Detection Rate for dif-
ferent spam edit distance val-
ues (d) and different number of
spam (NS), where BF Size =
100, 000,NBF = 3, NM =
10, 000 and s0 = 0.7

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

F
al

se
 P

os
iti

ve
 R

at
e

No of Messages (N
M

)

BF Size=1x104

BF Size=5x104

BF Size=1x105

BF Size=5x105

BF Size=1x106

Fig. 4. False Positive Rate
for different Bloom filter sizes
and different number of mes-
sages (NM), where NBF = 3
and s0 = 0.7

to a same bin–, thereby keeping a more accurate count
of inserted elements. In other words, if more blocks are
mapped to a same bin in Bloom filters, then the bin
threshold values computed during training (t[i]) will be
high. As a result, some spam activity will not be sufficient
to have enough number of bins exceeding threshold values.

Similarly, Figure 2 and Figure 3 shows the effect of num-
ber of spam and effect of spam edit distance respectively.
As expected the proposed algorithm performs better as the
number of spam messages increases and the edit distance
between spam messages decreases.

False Positives: We clearly see from detection results
presented above that, in order to achieve high detection
rates in all cases, we need to use large Bloom filters (i.e.
BFSize ≥ 500, 000). However, besides requiring more
memory, large Bloom filters also cause high false positive
rates, as we observe in Figure 4. This is because, bin
thresholds are relatively low for large Bloom filter since
very few different blocks are mapped to the same bins. As
a result, some messages, especially the ones which contain
high number of commonly used words and phrases, have
a good chance of causing many of the bins to exceed
corresponding threshold values. One way to mitigate this
is to employ a white list of commonly occurring words,
which would be omitted by the proposed algorithm.

IV. Limitations and Potential Improvements

Our proposed scheme is designed to process high num-
ber of messages in realtime at a cost of some accuracy.
Consequently, the major limitation of our proposed scheme
is high false positive rates especially when very large
Bloom filters are used. As mentioned earlier, this is mostly
due to commonly used words in the data set such as, ’the’,

’and’, etc. and can be mitigated by employing a white list
of commonly used words. Such whitelists can also help the
proposed scheme to mitigate commonly occurring phrases
such as ’Happy Birthday’, etc. Furthermore, the output
of the proposed scheme can be further processed by more
accurate methods, which tend to be computationally more
complex, to improve accuracy. With such a setting, our
proposed scheme can be considered as a preprocessing
step to computationally more intensive filtering schemes,

thereby enabling them to scale up to large and realtime
deployments.

The proposed scheme requires at least few similar SMS
messages in order to detect spam campaigns. Therefore, it
may miss extremely slow spammers. Such spammers can
usually be detected by content-based spam filters which
process each message separately and independently.

V. Related Work

There have been several works previously proposed in
the context of SMS spam detection. In [14] [15] [16] authors
explore content based filtering of SMS spam messages.
While these methods are mainly inherited from email
spam filtering schemes, authors acknowledge that short
messages don’t contain sufficient information in order
for complex machine learning algorithms to be applied.
Therefore in [16] authors propose to employ other features
such as character bigrams, trigrams, etc, to increase per-
formance. To further improve detection accuracy, in [17]
authors suggest to use length of message, and appearance
of certain kind of information (phone number, url), and
in [18] authors propose to include features from stylis-
tic aspects of SMS messages. In [19] authors describe a
scheme which employs a fast string matching algorithm to
filter SMS spam containing predefined keywords. Despite
being effective, this method is only limited to the set of
blacklisted words and falls short when each spam message
is slightly modified. In [20] authors propose a clustering
based SMS spam detection method, where they observe
that SMS spam messages have similar contents therefore
they are likely to be clustered in a random subspace. In [7]
authors propose using social and temporal characteristics
of message senders to identify spammers. These methods
run into scalability problem and it is challenging to deploy
these methods in large networks. As a different perspec-
tive, in [21] authors propose to mitigate mobile spam, by
displaying CAPTCHA to senders. This method, however,
increases burden on SMS platform and requires client side
applications on mobile devices.

Standard Bloom filters [9] and their variations [10], [11]
are used in a wide range of applications such as rep-
resenting dictionaries for spell checking, database tables
record membership for distributed storage systems [22],

or network forensic applications to store network packets
digests [12], [23]. In [24] authors propose a large suite of
payload partitioning methods used for a network payload
attribution system, and insert the payload blocks into
Bloom filters.

Our proposed method essentially sketches the observed
SMS traffic and tries to answer certain questions based
on this sketch. Several different sketching-based methods
are proposed in different contexts. In [25] authors propose
CountMin sketch which is used to answer range and point
queries about the input data stream. Similarly, [26] pro-
poses an algorithm to efficiently maintain quantiles of the
input. In the context of network security, in [27], authors
propose a network flow sketching algorithm to efficiently
detect correlated flows within a stream of network data.

VI. Conclusion

We present an efficient method to quickly identify an
SMS spamming campaign by detecting an unusual number
of similar messages sent in a network over a short period of
time. Our method uses counting Bloom filters to maintain
approximate count of message content occurrences. Ex-
perimental results show that we can achieve a detection
rate of nearly 100% with a counting Bloom filter of size
larger than 500,000 bins for detecting as few as 10 similar
spam messages that differ by at most 20 characters within
10, 000 regular SMS messages. The proposed scheme is
a significant addition to existing SMS spam arsenal and
will achieve high performance and accuracy when used
in coordination with existing spam detection schemes. As
future work, we seek to test the method with real SMS
traffic and to address the challenges of online deployment
that uses extremely large datasets.

References

[1] GSMA White Paper, “Sms spam and mobile messaging at-
tacks - introduction, trends and examples: A white paper,”
January 2011, www.gsmworld.com/documents/srs attacks
threats.pdf.

[2] Cloudmark White Paper, “CloudmarkÕs definitive guide to sms
spam,” June 2011, http://www.cloudmark.com/releases/docs/
sms spam guide.pdf.

[3] GSMA Spam Reporting Service, www.gsmworld.com/
documents/srs overview.pdf.

[4] V. V. Prakash and A. O’Donnell, “Fighting spam with
reputation systems,” Queue, vol. 3, pp. 36–41, November
2005. [Online]. Available: http://doi.acm.org/10.1145/1105664.
1105677

[5] V. V. Prakash and A. J. OÕDonnell, “How collaborative
filtering can stop future forms of messaging abuse,” Cloudmark
White Paper, June 2011, www.cloudmark.com/releases/docs/
whitepapers/How Collaborative Filtering Can Stop
Future Forms of Messaging Abuse v05.pdf.

[6] A. J. OÕDonnell and V. V. Prakash, “Applying collaborative
anti-spam techniques to the anti-virus problem,” Cloudmark
White Paper, www.cloudmark.com/releases/docs/whitepapers/
Applying Collaborative AntiSpam Techniques to
AntiVirus Problem v04.pdf.

[7] C. Wang, Y. Zhang, X. Chen, Z. Liu, L. Shi, G. Chen, F. Qiu,
C. Ying, and W. Lu, “A behavior-based sms antispam system,”
IBM J. Res. Dev., vol. 54, November 2010.

[8] J. Brown, B. Shipman, and R. Vetter, “Sms: The short message
service,” Computer, vol. 40, December 2007.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, pp. 422–426, July
1970. [Online]. Available: http://doi.acm.org/10.1145/362686.
362692

[10] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings
of the twentieth annual ACM symposium on Principles of
distributed computing, ser. PODC ’01. New York, NY,
USA: ACM, 2001, pp. 144–150. [Online]. Available: http:
//doi.acm.org/10.1145/383962.384004

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
cache: a scalable wide-area web cache sharing protocol,”
IEEE/ACM Trans. Netw., vol. 8, pp. 281–293, June 2000.
[Online]. Available: http://dx.doi.org/10.1109/90.851975

[12] M. Ponec, P. Giura, H. Brönnimann, and J. Wein, “Highly
efficient techniques for network forensics,” in Proceedings of
the 14th ACM conference on Computer and communications
security, ser. CCS ’07. New York, NY, USA: ACM, 2007,
pp. 150–160. [Online]. Available: http://doi.acm.org/10.1145/
1315245.1315265

[13] YouTube, www.youtube.com.
[14] G. V. Cormack, J. M. G. Hidalgo, and E. P. Sánz, “Feature

engineering for mobile (sms) spam filtering,” in Proceedings
of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, ser. SIGIR
’07, 2007.

[15] G. V. Cormack, J. M. Gómez Hidalgo, and E. P. Sánz, “Spam
filtering for short messages,” in Proceedings of the sixteenth
ACM conference on Conference on information and knowledge
management, ser. CIKM ’07, 2007.

[16] J. M. Gómez Hidalgo, G. C. Bringas, E. P. Sánz, and F. C.
Garćıa, “Content based sms spam filtering,” in Proceedings
of the 2006 ACM symposium on Document engineering, ser.
DocEng ’06, 2006.

[17] W.-W. Deng and H. Peng, “Content based sms spam filtering,”
in Machine Learning and Cybernetics, 2006 International Con-
ference on, 2006.

[18] D.-N. Sohn, J.-T. Lee, and H.-C. Rim, “The contribution of
stylistic information to content-based mobile spam filtering,” in
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers,
ser. ACLShort ’09, 2009.

[19] J. Liu, H. Ke, and G. Zhang, “Real-time sms filtering system
based on bm algorithm,” in International Conference on Man-
agement and Service Science (MASS), 2010, 2010.

[20] S. Dixit, S. Gupta, and C. Ravishankar, “Lohit: An online
detection & control system for cellular sms spam,” in IASTED
Communication, Network, and Information Security, 2005.

[21] P. He, Y. Sun, W. Zheng, and X. Wen, “Filtering short message
spam of group sending using captcha,” in Proceedings of the
First International Workshop on Knowledge Discovery and Data
Mining, 2008.

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, pp. 4:1–4:26, June 2008. [Online].
Available: http://doi.acm.org/10.1145/1365815.1365816

[23] A. Broder and M. Mitzenmacher, “Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4,
2005. [Online]. Available: http://www.internetmathematics.
org/volumes/1/4/Broder.pdf

[24] M. Ponec, P. Giura, J. Wein, and H. Brönnimann, “New payload
attribution methods for network forensic investigations,” ACM
Transactions on Information and System Security, vol. 13, 2010.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” J. Algo-
rithms, vol. 55, pp. 29–38, 2004.

[26] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss,
“How to summarize the universe: Dynamic maintenance of
quantiles,” in In VLDB, 2002, pp. 454–465.

[27] B. Coskun and N. Memon, “Online sketching of network flows
for real-time stepping-stone detection,” in ACSAC’09: 25th
Annual Computer Security Applications Conference, Honolulu,
HI, Dec 2009.

