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Spatio–Temporal Transform Based Video Hashing
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Abstract—Identification and verification of a video clip via its fin-
gerprint find applications in video browsing, database search and
security. For this purpose, the video sequence must be collapsed
into a short fingerprint using a robust hash function based on signal
processing operations. We propose two robust hash algorithms for
video based both on the Discrete Cosine Transform (DCT), one on
the classical basis set and the other on a novel randomized basis set
(RBT). The robustness and randomness properties of the proposed
hash functions are investigated in detail. It is found that these hash
functions are resistant to signal processing and transmission im-
pairments, and therefore can be instrumental in building database
search, broadcast monitoring and watermarking applications for
video. The DCT hash is more robust, but lacks security aspect, as
it is easy to find different video clips with the same hash value. The
RBT based hash, being secret key based, does not allow this and
is more secure at the cost of a slight loss in the receiver operating
curves.

Index Terms—Broadcast monitoring, multimedia content au-
thentication, robust hash, video database indexing, video hash.

I. INTRODUCTION

HASH functions are widely used in cryptography (MD5,
SHA-1), where the main purpose is to check the integrity

of the data. Since the resulting hash value is highly sensitive
to every single bit of the input, these functions are extremely
fragile and cannot be adopted for hashing multimedia data. In
multimedia hashing, it is more important to be sensitive to the
content rather than the exact binary representation. For instance,
the raw video, its compressed version, its low-pass filtered ver-
sion, its increased brightness version and its decreased con-
trast version should yield the same hash value since their con-
tent is essentially the same but their binary forms are very dif-
ferent. So, an alternate way to compute the hash is needed for
multimedia applications, where the hash function results in the
same output value unless the underlying content is significantly
changed. Such a hash function is known as a robust or percep-
tual hash function. Some of the applications of perceptual video
hashing include the following: 1) automatic video clip identifi-
cation in a video database or in broadcasting, 2) online search
in a streaming video, 3) authentication of the video content, 4)
content-based watermarking. The two desired properties of hash
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functions for multimedia data are robustness and uniqueness.
Robustness implies that the hash function should be insensitive
to perturbations, nonmalicious modifications caused by “mild”
signal processing operations that in total do not change the con-
tent of the video sequence. These modifications can be enacted
by the user, such as MPEG compression, contrast enhancement
or can occur during storage and transmission functions, such as
transcoding or packet drops. The uniqueness property implies
that the hash functions are statistically independent for different
content, so that any two distinct video clips result in different
and apparently random hash values.

There have been many robust hash functions proposed in the
literature. Fridrich [1] addresses the tamper control problem of
still images by projecting image blocks onto key based random
patterns and thresholding to create a robust hash. Venkatesan [2]
computes an image hash for indexing and database searching
from the statistics of subband wavelet coefficients. Lefèbvre [3]
uses the Radon transform for a perceptual hash. Similarly Seo
et al. [4] have used the Radon transform to obtain an affine-dis-
tortion resilient image fingerprint. Mihcak [5] iteratively se-
lects the visually significant objects from wavelet coefficients.
Caspi and Bargeron [6] obtain per frame hash by constructing a
Gaussian pyramid that yields a low-resolution image, which is
then median thresholded, resulting in a binary pattern for each
video frame. Yang et al. [7] base their video identification on
frame-by-frame similarity measure. They combat variations in
bit rate, frame rate, compression codec and resolution via locally
sensitive hashing and a nearest-neighbor search technique. In
[8], Monga exploits non-negativeness of pixel values and com-
putes hash via non-negative matrix factorization.

Although these still-image hashing methods can be extended
to video signals on a frame-by-frame basis, it is our contention
that a perceptual hash that encompasses the spatiotemporal con-
tent of the video in its totality would be more effective. For ex-
ample, video hashes constructed from the concatenation of indi-
vidual frame hashes would be very vulnerable against temporal
desynchronizations, such as frame rate change or frame drop-
ping. On the other hand, key-frame based hashes would be weak
from a security point of view, since an attacker could doctor the
remaining frames and obtain quite a different video sequence,
and yet end up in the same hash since key frames are kept un-
touched.

There are relatively few algorithms in the literature that do
not disregard the temporal evolution of content information.
Oostveen et al. [9], in a seminal paper, obtain a video hash by
applying 2 2 spatiotemporal Haar filters on the randomized
block means of the luminance component. In a similar vein,
in view of the shortcomings of frame-by-frame hashing, we
propose a technique that jointly extracts temporal features
along with the spatial features. Our scheme constitutes an ex-
tension of the existing hashing technique, DCT-transformation
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Fig. 1. Block diagram of the robust video hashing method.

followed by median quantization as in [10] to spatio–temporal
data. The innovation with respect to existing video hashing
methods in the literature is that it makes use of both spatial and
temporal video information simultaneously via 3–D transfor-
mations. This increases robustness against possible temporal
modifications, such as frame drop or frame rate change, while
maintaining the robustness against spatial manipulations.

There is some analogy between robust video hashing and con-
tent-based video retrieval. However their requirements do not
overlap completely. There are many proposed techniques in the
literature for video retrieval based upon such features such as
color histogram, texture and motion vectors for content iden-
tification [11], [12]. In content-based video retrieval, contents
similar in terms of color, texture, motion distribution etc. gen-
erate similar fingerprints, which are used for database search.
In robust hashing, on the other hand, authentication and secu-
rity aspects play a more important role. For example, we want
to prevent an attacker to easily switch between similar contents
without disturbing the hash. A case in point would be two dif-
ferent newsreaders dressed similarly and speaking in front of the
same background. While content-based video retrieval would
generate the same fingerprint, the robust hash should differen-
tiate the two newsreader scenes.

The rest of the paper is organized as follows. In Section II,
the proposed hash technique is introduced along with the two
different transforms. In Section III, useful properties and sta-
tistical characteristics of the resulting hash sequences are pre-
sented. Section IV contains detailed information about the ex-
perimental setup with discussions on the tools and techniques
used in the experiments. The results of the experiments are de-
tailed in Section V, where we address not only identification and
verification performance under adversarial conditions but also
we present broadcast monitoring results and performance com-
parisons with Oostveen’s algorithm [9]. Finally in Section VI,
conclusions are drawn and future studies are explored.

II. ROBUST HASH COMPUTATION

The proposed hash function is based on the intrinsic attributes
of a video that capture its spatio–temporal essence. These at-
tributes are based on the low-pass coefficients of 3-D trans-
formations of the luminance component of a video sequence.
The transforms we considered are the 3-D DCT (3D-DCT) and
the 3–D l Random Bases Transform (3D-RBT), although sev-
eral other transforms such as Discrete Wavelet Transforms, etc.,
would also be possible. Due to their low-pass nature, these fea-
tures are insensitive to minor spatial and/or temporal perturba-
tions. However, since the predominant portion of the energy re-
sides in these coefficients, they possess sufficient discriminative

information about a video sequence. The final hash string is gen-
erated from the relative magnitude relationship among selected
coefficients.

The video clip to be hashed can exist in various spatial di-
mensions and frame rates. Since our scheme targets a constant
number of hash bits, we need to standardize the input video clips
in order to keep the size of the hash sequence constant for all
eventual inputs. This means that all the resulting hash values
have equal significance and represent their ancestor video clips
at equal degree of summarization. One can think of hashing
as a clustering operation, where all the video sequences, cor-
responding to essentially the same content but that may have
different representations, are all mapped to the same hash se-
quences. The first step in clustering is the preprocessing op-
eration, where videos under different formats, frame rates and
sizes, and sequence lengths are standardized to a reference size
and length. The preprocessed video, albeit with the same con-
tent, can still have an infinite variety of appearances due to inno-
cent or malicious modifications, which range from MPEG com-
pression to frame drops in the transmission. Some 15 varieties
of modifications are in fact described in Sections IV and V. Our
hashing scheme then purports to map these sequences into the
same hash value if the contents are identical, and to entirely dif-
ferent hash values if the contents are different.

Fig. 1 shows the basic steps of our robust hashing algorithm.
The input video is first normalized to a standard format. After
that, a 3-D transformation is applied on this standardized video
and specific transform coefficients are selected. Finally, a hash is
generated from the magnitude relationship among the selected
coefficients. In the rest of this section, we explain each of the
hash computation steps.

A. Preprocessing and Normalization

The input video sequence is first converted to a standard
video signal in terms of frame dimensions and of the number
of frames via smoothing and subsampling. Let’s adopt a
notation , which represents some video clip
with title “ ”, and where “ ” is the frame width, “ ”
is the frame height and “ ” is the number of frames within
the clip. An example is , which is
in the QCIF size and it contains 400 frames. In our scheme,
any video signal, , is converted to a standard
size, via both spatial
and temporal smoothing and subsampling. The hash function
is then calculated using this standardized
sequence. This “standard” size was experimentally determined
based upon the fact that smaller sizes risk loosing semantic
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Fig. 2. Stages of preprocessing before hash extraction.

Fig. 3. Description of a pixel tube of length ftotal and at location (m, n).

content, hence discriminatory power, while larger dimensions
have diminishing returns for uniqueness.

Fig. 2 shows how the video dimensions change in stages. The
original video signal with arbitrary dimen-
sions is temporally smoothened and subsampled to form the

sequence. Each pixel in the video frame is filtered
separately along the temporal dimension as illustrated in Fig. 3.
Here, the array of pixels having the same location in successive
frames is referred as a pixel tube and the pixel tube is
defined as , where is the
total original number of frames, and there is one such tube for
each of the pixels in the frame. Temporal smoothing removes
minute variations of a pixel in time and spreads large changes
or object movements over several frames. Finally, the frames
are spatially smoothened and subsampled to yield the goal se-
quence . All pixel tubes are filtered with a low-pass
Gaussian filter with variance of . This kernel size was ad-
justed in order not to excessively smooth out the dynamic con-
tent on the one hand, and on the other hand to allow for sub-
sampling. Obviously, with too large a kernel, all video starts
looking like a single blurred image, and with too short a kernel,
high-frequency motion, not essential to typify the content, will
unnecessarily impact on the computed hash and its robustness.
An alternative way of filtering would be a motion-compensated
spatio–temporal smoothing method, where the pixel tube tra-
jectories are not straight, but follow the object motion. Since
we gained a satisfactory result from separate spatial and tem-
poral smoothing, we did not use the computationally harder
motion-compensated methods. The smoothened video signal is
afterwards subsampled in time, to reduce the input clip to the
target number of frames “ ”. We denote this video signal as
smoothened .

Fig. 4. The 3D-DCT array of normalized video with dimensions W = 32,
H = 32 and F = 64. The cube of selected coefficients for 64-bit signature
sequence is also shown in the upper-left corner.

Spatial smoothing was implemented on each frame via a 2-D
Gaussian filter with variance and kernel

. Thus the temporally subsampled
frames were convolved with the Gaussian filter , to yield

and then subsampled to
the size .

B. 3D-Transforms and Coefficient Selection

Most 3D-transform techniques with good compacting char-
acteristics can serve the purpose of summarizing and capturing
the video content as they collect and embed in their coefficients
the information concurrently from time and space. We focused
on two transform types: the 3D-DCT transform due to its wide-
spread usage in image and video processing and its easy im-
plementation, and the 3D-RBT transform due to its key-based
security aspects and its good feature extraction capability.

1) 3D-DCT Transform Case: After applying the DCT trans-
form to the normalized sequence , one obtains a
3-D array of DCT coefficients . Typically low-
frequency DCT coefficients contain the predominant part of the
energy and they are also robust against most of the signal pro-
cessing attacks, such as filtering and compression. To satisfy the
uniqueness or discrimination property, one must judiciously en-
roll coefficients from mid- to high-frequency regions. In our ex-
periments, we have found that coefficients, extracted
form a cube in the low-pass band, were appropriate
for hash extraction.

We exclude the lowest frequency coefficients in each di-
rection, that is DCT coefficients with addresses ,

, and , to enhance uniqueness among
video shots that have similar, but not identical content. In
our experiments we have observed that including the lowest
frequency coefficients will reduce the mean hamming distance
between hash sequences by 2% (for 64 bit hash under no attack
case, mean value drops from 32.01 to 31.34), which means that
hash values become slightly alike for different contents. This is
probably due to the fact that the lowest frequency coefficients
does not reside much discriminative information. Fig. 4 shows
the cube containing the selected coefficients for
hashing.
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2) 3D-RBT Transform Case: A hash function is secure if it
is impractical for an adversary to maintain the same hash while
changing the underlying video content or to obtain a signifi-
cantly different hash for essentially the same content. Unless
a robust hash is made secure, a pirate can beat applications that
utilize it such as in broadcast monitoring, database searching or
authentication [13]. In other words, the pirate can manipulate a
video clip to yield hash values that are very different than the one
used for monitoring and tracking. This weakness can be reme-
died if the computation of the hash is tied to the knowledge of
a secret key. In other words, one should not be able to compute
the target hash from the video clip unless one possesses the key.
If the pirate does not possess the key, he/she would not know
how to manipulate and engineer a clip and its hash to a desired
value.

A practical way that immediately emerges would be pseudo-
randomly selecting a subset of 3-D DCT coefficients and com-
pute hash from them. However, the weakness of this method is
that, the universal coefficient set whose random subset is used
in hash extraction is known to an attacker. Thus, he may forge
the original video without disturbing the rank order of those co-
efficients. In other words, he may modify the forged video by
slightly altering candidate DCT coefficients and making them
to have the same rank order as the original video. Then, no
matter which subset of the coefficients is used, the extracted
hash would be exactly the same. Therefore, the calculation of
the coefficients have to be made secret (key-based), which can
be achieved by using projections on random 3-D basis functions.
These basis functions can be generated in various ways, for ex-
ample, by narrow-band filtering of random number sequences
[10]. In our work, we opted for discrete cosine transform bases,
but with randomly chosen frequencies. Thus, we expect to at-
tain a degree of randomness sufficient to fool a pirate and yet to
benefit from the robustness and uniqueness of the regular DCT.
We call this transform the Random Bases Transform or RBT.

Three-dimensional random bases with dimensions of
are generated by using separate 1-D RBT bases in each

dimension, that is, by using cosinusoidal signals with random
frequencies generated with a key. In fact each 1-D base is an
ordinary 1-D DCT function with a randomly assigned
frequency:

(1)
In this function, the frequency is pseudo-randomly selected

as , where is the frequency interval
and is a uniform random number in [0, 1]. For example, based
on the experience of 3D-DCT coefficient selections, we have
chosen . Also the pseudo-random quantity

is discrete and assumes ten different
values.

In order to generate a 3-D random bases with dimensions
, first a number of 1-D bases has to be generated. For

W direction there has to be 1-D bases with length ;
for H direction there has to be 1-D bases with length

; finally for F direction 1-D bases with length
generated. For instance,

Fig. 5. Generation of a 3-D RBT basis by enrolling 1-D random-frequency
DCT bases separately in each direction.

1-D cosine signals are generated for a basis function of size
. Each of these 5120 signals has one of ten pos-

sible frequency values, which means that different basis
functions can be generated. Therefore, an exhaustive search or
brute force type attacks, which try to reveal the secret key, are
not practical. These basis functions are illustrated in Fig. 5. Each
arrow in this figure indicates the direction of 1-D cosine signal,
that is, the data index set over which the projection operation is
computed.

The hash features of a video cube along each di-
mension are computed by a 3D-RBT basis set containing

, and random frequencies. By restricting the fre-
quencies to lower bands one can inherit most of robustness and
uniqueness properties of 3D-DCT bases. The overall 3D-RBT
basis with dimensions can be formulated as

(2)

In this expression one has ; ;
, is the normalization term, and are pseudo-

randomly generated frequencies to probe along the w dimension
and similarly for the and .

In the DCT transform, the rows of the transform matrix follow
a pattern of increasing frequencies; consequently, the columns
of the matrix grow from low to high frequencies. On the other
hand, in the RBT transform each row is assigned a random fre-
quency, so that the juxtaposition of these rows may generate all
high frequency patterns along the columns. Fig. 6(a) displays
the 2-D signal consisting of random cosines and Fig. 6(b) one
of its columns, where the high-frequency waveform is obvious.
These high-frequency random basis functions unnecessarily re-
duce the robustness of the hash algorithm. To mitigate this loss
of robustness, we low-pass filter the generated 3D-RBT bases
in all three dimensions. Thus we average the random cosinu-
soids in the directions with a 5 5 box filter, and those
along the F direction with five-term box filter. Finally the RBT
bases are normalized to have zero mean and unit length. The
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Fig. 6. (a) Display of a matrix whose rows consist of random cosinusoids; (b) The 16th column of the 2-D signal in (a); (c, d) The first planes of 2 different 3-D
RBT bases after low-pass filtering.

first planes of two different RBT bases after being filtered are
shown in Fig. 6(c) and 6(d).

The RBT is obtained via the projection of the 3–D video data
onto these 3-D basis functions. We have used dimensions similar
to the 3D-DCT case, that is, using size (32, 32, 64) transform
bases. The transformation is followed by the selection of the 64
components obtained from projection of signal onto 64 different
basis functions.

C. Hash Computation

Once the 3D-transform is applied and the specific coefficients
are selected, the hash computation procedure is the same, re-
gardless of which transformation is used. The selected T trans-
form coefficients are binarized using the median of the rank-or-
dered coefficients. If the subset of rank-ordered coefficients is
denoted as , , for some video sequence, then
their median is found as . Once

Fig. 7. Reference hash sequence used in hamming distance statistics.

is determined, then quantization of the selected coefficients of
that video V is done as follows:

(3)

The quantization operation makes the hash more robust
against minor changes in the video sequence, since we only
preserve the information of the coefficient value being greater
or smaller than the coefficient median. Furthermore, with this
particular quantization we guarantee that there is always an
equal number of 1’s and 0’s, with some interesting conse-
quences as detailed in the next section.
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Fig. 8. Distribution of Hamming distances. Dashed curve is the theoretical probability density function [(7)] with T = 64, � = 32 and � = 32. The solid curve
is the Gaussian density fitted to experimental data, where data points are marked with ‘x’. a) DCT-based hash distances where � = 32:01 and � = 17:25. b)
RBT-based hash distances where � = 31:29 and � = 30:33.

III. PROPERTIES OF THE HASH SEQUENCE

Recall that the two critical properties of a perceptual hash
function were uniqueness and robustness. Uniqueness implies
that the hashes from any two different video contents should be
radically different from each other with very high probability. In
an ideal hash based on median quantization, we have assumed
that each possible hash sequence occurs with equal probability
guaranteeing the best uniqueness property. We test our hash
functions whether obey this assumption by deriving theoreti-
cally the probability distribution of the distance between hashes
arbitrarily selected videos and compare it against empirical den-
sities via histograms.

The median-based quantization used in the generation of our
robust hash function guarantees that there are exactly T/2 1’s
and T/2 0’s in each hash sequence. The sequences possessing
equal number of 1’s and 0’s are called “permissible sequences”.
In particular, the total number of possible hash values, denoted
as N, can be calculated as, for :

(4)

Furthermore, we assume that all possible hash sequences
occur with equal probability for the ideal case and then deter-
mine the distribution of hamming distances between any two
arbitrary selected hashes. Under this condition, one would get
the same probability density of hamming distances between
any arbitrarily selected reference hash and all other remaining
hashes. Thus, without loss of generality, we select a special
hash sequence constituted of all zeroes in the first half and of
all ones in the second half portion, as depicted in Fig. 7.

The hamming distance, , between this special sequence and
any other arbitrary hash sequence is determined by the number
of differing digit positions, which is given by the number of 1’s
in the first half and the number of 0’s in the second half of the
T-bit sequence. More specifically, using the number of 1’s and

0’s in the portion ( or 2), respectively, as and ,
we would obviously have, for the reference sequence in Fig. 7,

and . For any other arbitrary
and permissible sequence, we have the following relation:

(5)

Also, the following equalities hold true: i) ,
ii) , iii) , and iv)

. Using these equalities, we obtain

(6)

Equation (6) states that the hamming distance between two
arbitrary hash values is always an even number, since a differing
1 must always be compensated by a differing 0 in some other
position to maintain equality of ones and zeros. Furthermore,
the probability of a hamming distance is equal
to the occurrence probability of ones in the first portion of
the hash. Since ones and zeros occur with equal probability, the
probability distribution of hamming distances is given by

(7)

where one must have and . This
probability density of hamming distances is plotted in Fig. 8.
Since is the binomial probability function, we have the
following mean and variance values:

and .
In Fig. 8, we have superposed the experimental distribution

of hamming distances on the theoretical distribution in (7) under
uniform distribution assumption of hashes. The experimental
distribution is obtained by calculating hamming distances be-
tween 244 test video clips, that is using 244 243/2 distance
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computations overall. Also in Fig. 8, we plotted the Gaussian
fitting to the observed hamming distances. We used the Expec-
tation-Maximization (EM) fitting procedure, which also returns
a figure of merit for being truly Gaussian. Also the experimental
hamming distances were subjected to the Bera–Jarque gausian-
ness test. For the DCT-based hash, it was found that this test
accepts the hypothesis of normal distribution up to significance
level of 0.41. However, it is observed that the variance of the ex-
perimental distribution is lower than the theoretical distribution.
This result may be primarily due to the well-structured nature of
the DCT basis functions unlike the irregular and random struc-
ture of RBT basis functions. Hence, although any type of signal
can be represented by DCT coefficients, the DCT coefficients of
natural video signals may have some regularity, which can pre-
vent the DCT coefficients appear as randomly picked numbers.
Therefore, the resulting hashes of video clips cannot span the en-
tire hash space uniformly. Consequently, the empirical and the-
oretical results does not match for DCT based hash. The good-
ness of fit of the Gaussian approximation to the binomial model
was found to be 0.1026 using the Kolmorogov–Smirnov test.

On the other hand, for the RBT-based hash, the mean and
variance of experimental distances are found as and

, both very close to their theoretical values. One can
observe that the solid Gaussian curve fits almost perfectly to the
theoretical curve. The Bera–Jarque gausianness test accepts the
normality hypothesis with a significance level of 0.51 and the
Kolmogorov–Smirnov distance between the empirical and the-
oretical distributions is 0.0886. The better fit between empirical
distribution of hamming distances and the theoretical distribu-
tion can be due to the randomness and irregularity of the RBT
patterns which result in transform coefficients and hash bits ap-
pearing as if they were randomly picked. However, since there
has to be exactly 32 ones and 32 zeros in the hash function, the
hash bits inherently cannot be independent from each other. For
instance if first bit is 1, the probability of second bit to be 1 is
31/63 where the probability to be 0 is 32/64. But as long as the
0’s and 1’s are uniformly spread through 64 positions, which we
mostly observe in our experiments, the bits can be considered as
almost independent. This can possibly explain the reason why
the ideal and the empirical distributions differ slightly.

Another desirable property of the key-generated RBT hash is
that it should be very difficult to obtain the same hash under dif-
ferent keys, in other words, the hashes for different keys should
be totally unpredictable. If the hash values are statistically in-
dependent, then their distances should have a Gaussian distri-
bution around the mean value of , which indeed
turns out to be the case. Under 100 different key values, the
mean value of inter hamming distances is observed as 32.01.
Also we investigated the independence of each bit in the hash.
Again under 100 different key values, we calculated the mar-
ginal and conditional probabilities of each bit. We observed that
each bit of the hash is almost statistically independent of other
bits where rep-
resents bit locations in the hash and . Thus, the
hash values of the same video for different keys can be regarded
as statistically independent as required from a key based hash
function.

A remark on the security of the RBT-based hashes: Rad-
hakrishnan et al. in [13] propose a boosting technique to at-
tack random-basis hashing algorithms. They show that, with a
given image and its hash bits, the statistical characteristics of
the random-bases can be learned with Adaboosting and the re-
sulting hash bits can be eventually estimated for any given input
image. The RBT-based video hash is immune to the boosting
attack. The reason is that, different from vulnerable techniques
pointed out in [13], each bit of our hash generated from me-
dian quantization of projections depends on the entire video se-
quence instead of on a single small block. More precisely, in
the algorithms targeted by [13], the image (or frame) is first di-
vided into blocks and then each block or its DCT coefficients
are projected onto a random basis. The corresponding hash bit
is obtained from the 1 bit quantization of that projection result
with respect to a given threshold. Hence, once the attacker esti-
mates the behavior of random bases, he could replace any block
with another block without changing the hash bit. In order to
make adaboosting attack impractical, it is proposed in [13] that
the computed hash bits should depend also on the neighboring
blocks instead of just one block. In this respect, our algorithm
provides the neighborhood dependence par excellence, since
each bit results from the projection of the entire video on some
basis function. In other words, each bit depends on all the pos-
sible blocks into which the video can be partitioned. Moreover,
unlike the vulnerable algorithms, in our method the threshold
value for coefficient binarization is not predefined but calcu-
lated dynamically (median value of all projections). Thus the
adaboosting attack is hampered both by dynamic thresholding
and holistic (nonlocal) processing of data.

IV. EXPERIMENTAL SETUP

A. Types of Video Sequences

The video clips used in our tests were selected from four dif-
ferent genres of content classes widely available in video media.
Our samples were extracted from TRT (Turkish Radio and Tele-
vision) programs stored in high-quality MPEG-2 format. The
content classes were as follows.

• Movie: Video from this class contains several scenes from
the movie called Soccer Dog.

• Documentary: This class contains a documentary program
showing the life of the Panda.

• News: The videos in this class consist of a speaker reading
news, sports news and weather forecast refurbished with
complementary scenes.

• Sports: This class contains scenes from a soccer game in-
cluding both close and distance shots.

We selected 61 video clips from each of the content classes re-
gardless of the scene changes or any border descriptor. So each
clip may either contain a complete scene or concatenation of
series of scenes. Each clip contained 350 frames, which corre-
sponds to of test video.

B. Distance Metrics

In order to compare hash values, a specific distance metric has
to be defined. A preferable distance metric should generate close
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distances between hash values of video clips having same con-
tent and large distances between hash values of different con-
tents.

Several proximity indices for binary vectors, such as the Jac-
card index or simple matching coefficient, find applications in
binary pattern comparisons [14]. We have simply used the Ham-
ming distance between two hash values, labeled and , formu-
lated as , where the respective
hash sequences and take 1 and 1 values. We
also wanted to correlate the Hamming distances with the quality
differences between two video sequences, especially after the
attacks, such as compression or frame drops. One possible way
to measure the quality difference between two sequences (say,
between original and attacked versions) is the Structural Sim-
ilarity Index (SSIM) of Bovik [15], [16]. SSIM looks beyond
simple pixel similarity, for a higher-level interpretation of dis-
tortion and thus attempts to provide an objective measurement
of subjective quality assessment. SSIM figures range from 0 to
1, and as the two videos become more and more similar the
score tends to 1. We stretched the use of the SSIM index be-
yond quality measurement as an indicator of content difference.

We also extracted two performance statistics from hashes
using the 244 video clips: Inter-hash distances and intra-hash
distances.

• Intra-Hash Statistics are based on the Hamming distances
of hash functions of the same video content under various
modifications. They represent the robustness performance
of video hash function. In fact, we expect the Hamming
distance to remain small between the hash of the original
and the hashes of the video subjected to the modifications
as in Table I.

• Inter-Hash Statistics are based on the Hamming distances
of hash functions of different video sequences, whether
in original form or in modified forms. They represent
the uniqueness, that is, discrimination performance of
the video hash algorithm. For any modification type or
strength, we compute Hamming
scores, when we compare every clip to every other clip. If
the contents are different, one expects the inter-distances
to be clustered around the maximum average distance of

.
• Intra-Hash Statistics with a Key are based on Hamming

distances of hash functions of the same video content under
various keys. They represent the unpredictability aspects of
the RBT video hash. We expect these statistics to behave
as the inter-hash statistics case.

C. Description of Attacks Types Used in the Experiments

The robustness characteristic of video hash is tested by using
several different versions of the video clips obtained under var-
ious types of modifications. The types and properties of applied
modifications, whether originating from signal processing oper-
ations or from losses during transmission, are listed in Table I.
These form the major types of modifications on video. Also,
the class of modifications can be further extended, two exam-
ples being histogram equalization and gamma correction. How-
ever, these modifications form a subset of brightness and con-
trast manipulations. Samples from modified video frames and

the concomitant SSIM and PSNR figures are also presented. The
modification strengths used are exaggerated in order to apply
“stress testing” to our video clip identifier. In other words, as
evident from PSNR figures and sample frames, video quality
falls often below acceptable level and yet, we expect the hash
to identify and differentiate content correctly. In other words,
despite severity of modifications, the hashes of the original and
modified versions of the video must be close to each other.

Video signals are most likely to encounter losses during
streaming over narrowband wireless channels. For a realistic
measurement of the performance under such lossy channels,
we have an experimental setup as illustrated in Fig. 9. The Xvid
MPEG4 codec, used in lossy channel experiments, pastes the
macroblocks from previous frames in lieu of lost macroblocks.

V. EXPERIMENTAL RESULTS

In this section we report first the intra-hash and inter-hash
distance statistics, and the consequent identification and verifi-
cation performances. We next investigate the effects of coeffi-
cient selection patterns, sampling rate change, reverse play and
discuss a broadcast monitoring application.

A. Intra- and Inter-Hash Statistics

Table II and Fig. 12 give comparatively the robustness per-
formance of the DCT-based and the RBT-based hashes. Recall
that low deviation scores of intra- Hamming distances indicate
robustness of the hash. It can be observed that the mean intra-
Hamming values of RBT-based hashes are slightly higher than
those of DCT-based hashes. This may be due to the more irreg-
ular patterns of RBT bases, which accommodate slightly higher
frequency components, and hence are more sensitive to pertur-
bations or attacks. Some comments on these results are in order.

1) Blurring: Since even heavy blurring does not much affect
the low-frequency coefficients, the hash function remains
very robust. Interestingly, for scenes with plain back-
ground and for almost static video sequences relatively
higher Hamming distances result due to the fact most of
the coefficients are close to zero, hence susceptible to sign
changes with small perturbations.

2) AWGN: The high-frequency perturbation superposed on
the video virtually goes unnoticed by the hash function.

3) Contrast manipulation: This manipulation modifies the
range of the pixel values but without changing their mu-
tual dynamic relationship. However, extreme contrast
increase/decrease results in pixel saturation to 255 and
clipping to 0, which forms low frequency plain regions
and consequently distorts the hash outcome.

4) Brightness manipulation: Though the hash function is
quite robust to this modification, whenever the brightness
manipulation is taken to the extreme of saturation (too
dark, clipped to 0 or too bright, saturated to 255), the
hash function suffers. This is because the saturated pixels
form uniform regions, which in turn distort the low-pass
coefficients. Notice however this level of manipulation is
not very realistic, as the video has lost most of its value.

5) MPEG-4 compression: Compression basically removes the
high-frequency irrelevancy and so has very little effect on
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TABLE I
DESCRIPTION OF MODIFICATIONS, THEIR PARAMETERS AND ILLUSTRATIVE FRAMES

perceptual hash. Notice that the original QCIF video is
compressed by a factor of 1520.

6) Lossy Channel: Under severe packet drops three types
of distortion occur: the whole frame can be dropped,
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Fig. 9. Setup for lossy (packet drop) channel experiments.

TABLE II
INTRA-HASH AND INTER-HASH AVERAGE � SCORES (HAMMING DISTANCES)

UNDER MODIFICATIONS

which causes deformation in the temporal waveform;
second, spatial data losses within a frame are padded with
black patches causing distortion in the spatial low-pass
coefficients; third, lost spatial data is recuperated with a
concealment technique causing slighter content perturba-
tion. Notice that most networks would provide throughputs
significantly better than the 99% rate. Notice that in the
illustration in Table I, in the left image the codec has tried
to conceal the error by replenishing the missing blocks
around the nose of Foreman from previous frames. In the
right image, the codec has failed in concealing the error
and has padded the missing blocks with black regions.

7) Fade-over: Fade-over attack is illustrated in Fig. 10(a).
Under reasonable levels of fade-over attack, most of the
content information is still preserved in the video clip.

Fig. 10. Normalized video illustrations of selected modifications: (a) Fade-over
effect in the Foreman sequence. (b) Substitution: Frames 5,6 and 7 are substi-
tuted with a scene from the Container sequence.

8) Clipping in time: This can be considered to be a more se-
vere version of the fade-over attack where the scene that
fades in is all blank/black. In the fade-over phase, there
are still remnants of the original video; hence as expected,
the performance under clipping is inferior to the fade-over
case.

9) Frame rotation: We consider two geometric modifications,
namely frame rotation and frame circular shift. The third
possible geometric modification, that of scaling is excluded
because, as stated in Section II-A, each video is first con-
verted to QCIF size and further to size of in
preprocessing and normalization phase, which wipes out
any kind of scaling from the video. The averaged Hamming
distances, averaged over 40 video sequences, is presented
in Fig. 11(a) for each rotation degree. RBT suffers more
from frame rotations as compared to DCT. In any case, it
can be roughly said that DCT based hash and RBT based
hash can work safely under up to 7 degrees and 3 degrees
of rotation, respectively.

10) Frame circular shift: We effect shifts by 1 to 7% of the
frame size: for example, the 5% shift for the QCIF frame
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Fig. 11. Average intra hamming distance under the modifications of (a) frame rotation; (b) frame circular shift; (c) random frame dropping; (d) frame rate change.

corresponds, respectively, to row-wise 9 and column-wise
7 lines. The averaged Hamming distances are given
in Fig. 11(b). It is observed that both DCT-based and
RBT-based hashes digress linearly as shifting percentage
is increased. Accordingly, the identification and verifica-
tion performances remain at a satisfactory level up to 5%
circular shifting.

11) Random frame dropping: This modification corresponds
to a lossy channel when the damaged packets always co-
incide with the frame headers. After frame drops at ran-
domly chosen locations, the gaps left by dropped frames
are filled by linear interpolation from nearest surviving
future and past frames in order to preserve the sequence
length. The Hamming distances, averaged separately at
each frame drop rate, are presented in Fig. 11(c). It is ob-
served that, both the RBT-based and the DCT-based hashes
survive for frame drop rates as high as 90%. That is be-

cause, the undropped frames are spread all over the video
and thus the hash function is able to extract sufficient tem-
poral information. Due to random and less robust nature
of RBT based hash, its performance is slightly worse than
DCT based hash.

12) Frame rate change: In this experiment, we test the perfor-
mance of our hash when the video frame rate is altered
but the content is preserved. Rate reduction is realized by
anti-aliasing filter and subsampling the frames, while rate
increase is achieved via an interpolation filter. Since the
original frame rate is 25 fps, we obtain the frame rates
6.25, 8.33, 12.5, 25, 50, 75, and 100 fps or alternatively, we
have 75, 100, 150, 600, 900, and 1200 frames instead of the
original 300 frames, though the durations are the same and
content is preserved to the extent allowed by the respective
interpolation and decimation operations. Fig. 11(d) plots
the hamming distance between hashes of the frame-rate-al-
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Fig. 12. The mean values of intra-hash and inter-hash statistics of RBT- and
DCT-based hashes.

tered video and the hash of the original video. It is inter-
esting to observe that the hashes of rate-altered videos do
not deviate significantly from their original.

Table II and Fig. 12 summarize the inter-hash statistics. No-
tice that the averages stay very close to the theoretical value,
under independence assumption, of . As already re-
marked in Section III, Fig. 8, the variances of DCT-based hash
differ somewhat from theoretical value. This is because DCT
coefficients in adjacent bands may not be after all independent;
in other words close-by frequencies tend to have similar magni-
tudes and signs.

B. Identification and Verification Performance

The identification problem is defined as the ability to recog-
nize a video clip in a database of several other video clips. For
example, given a 12-s or 300-frame video clip, the algorithm
must identify that clip within a database of hundreds or thou-
sands of other video clips, or, browse through and spot it in
long video sequences (e.g., a two-hour movie). The identifica-
tion or detection performance can be measured in terms of the
percentage of correct recalls.

Thus to identify a video clip, which may be given in the orig-
inal or in any modified form, its hash is compared against the
hashes of all original video clips. The video clip, whose hash
has the smallest Hamming distance is declared as the identified
video. The ratio of correctly identified video clips to the number
of all video clips tested in the database (244 clips in our experi-
ments) determines the identification performance. The no-mod-
ification and modified identification performances are presented
in Table III. While the overall performance is very satisfactory,
the RBT-based hash performs slightly inferior to the DCT-based
one.

The verification problem, on the other hand, is defined as the
effort to prove or disprove that a video clip is indeed what it is
claimed to be. In a verification experiment, one must test both

TABLE III
IDENTIFICATION PERFORMANCES OF THE DCT AND RBT-BASED

HASHES IN PERCENTAGES (244 VIDEO CLIPS) (ALL THE MODIFICATION

PARAMETERS ARE AS IN TABLE I)

TABLE IV
VERIFICATION PERFORMANCE

the “genuine record” as well as all the other “impostor” records
in their various altered versions, possibly transfigured by the
modifications described in Section IV-C. Verification perfor-
mance is determined by comparing the hash of each video clip to
the hashes of all clips in the database. If the Hamming distance
between the test hash and a database hash is below the prede-
fined threshold, then the test video is accepted as genuine; oth-
erwise it is rejected. If the accepted case does indeed correspond
to the correct content, than one obtains a correct detection, oth-
erwise it becomes a false alarm (false positive). If the correct
content is rejected because its hash distance remains above the
decision threshold, then we have a false reject case (false neg-
ative). If an “impostor” video clip (a video clip with a different
content due, for example, to tampering) is rejected then we have
a true negative. The verification performance is measured as the
ratio of correct detections to total tests.

The verification performance is computed for both the cases
of EER: Equal Error (i.e., , and also for the
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Fig. 13. Inter- and intra-Hamming distance histograms for DCT-based hash. Note that the histogram range is different in each graphic, though the area under-
neath always adds up to one. The modification parameters are 3 , 3%, 70%, and 1/4 for spatial rotation, spatial shifting, frame dropping and frame rate change
respectively. The parameters for other modifications are as stated in Table I.

false alarm rate of 1%. These scores are given in Table IV and
the inter- and intra-Hamming distance histograms are plotted
in Fig. 13 for DCT-based hashes. The RBT-based hash dis-
tances (not shown) plot in a very similar way. Similar to the
case of clip identification, DCT-hashes perform slightly better
than the RBT-hashes. In either case the deep valley between the
two probability humps suggests that thresholds can be easily
selected to achieve various false negative—false positive com-
promises. The main observation is that the proposed hashes, in
particular the DCT variety fares very well in verification tests.
The only modification under which the verification performance
drops substantially (5%) is the 8% time-clipping.

C. Effects of Different Coefficient Selection Patterns

It is possible to consider other DCT coefficient selection pat-
terns. We have explored with four different patterns, as detailed

in the sequel. Pattern 1 is the pattern, used throughout
the paper and shown in Fig. 4, that is,

. Pattern 2, also consisting of 64 coefficients, includes
the lowest frequency coefficients to the exclusion of higher fre-
quency terms, that is, . Pat-
tern 3 contains 128 coefficients from rectangular prism, that is,

. Obviously this
scheme contains more of the higher frequency spatial informa-
tion to the detriment of temporal details. Pattern 4 is the coun-
terpart of Pattern 3 as it picks more coefficients from temporal
frequencies. The 128 coefficients within the rectangular prism
of consist of

. The inter- and intra-hash average normalized ham-
ming distances are shown in Fig. 14. It is interesting to observe
that the performance does not depend critically of the coeffi-
cient selection pattern. Nevertheless, there are minute differ-
ences. For example, Pattern 2 is slightly more robust (due to its
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Fig. 14. Different coefficient selection: On the left side, the average intra-hash normalized Hamming distances are plotted, while on the right side, average scores
for inter-hash case are given for each type of modification and for each coefficient selection pattern.

Fig. 15. Illustration of clip search via a sliding window.

lower frequency content) to the detriment of its clip discrimina-
tion ability, and Pattern 3, containing lower temporal frequen-
cies, is somewhat more resistant to fade-over and time clip mod-
ifications.

D. Broadcast Monitoring

In this experiment, we search a given video clip in a longer
video data, where it may be possibly embedded. The search is
enabled by sliding a frame window, the same size as the esti-
mated clip length, throughout the longer sequence (Fig. 15). We
assume that, the original clip length is known and the length of
the sliding window is chosen accordingly. For every step, the
hash of the sequence covered by the window is calculated and
compared with the reference hash. For example, the reference
hash can be that of a TV advertisement spot, and the task is mon-
itoring and automatically counting the time instances at which
the spot is broadcast. Since previous experiments have shown
that hashes are resistant for fade-over effects up to 8% or less (28
frames out of 350), we slid the window by steps of ten frames.

Fig. 16 illustrates the DCT- and RBT-based hash searches.
Clips of length 300 frames from four video genres are used to
test the hash-based search. The target clips are placed in 800-
frames long videos, taking place between frame numbers 350 to
650. Clips are always embedded in their own genre, for example,
sport clips within sport videos.

In the plots in Fig. 16, the x-axis shows the frame position in
steps of 10 while the y-axis indicates the Hamming distance be-
tween reference hash and the hash of the sequence under the run-
ning window. One can notice that the Hamming distance drops
dramatically at the correct spot of the clip. Although we assume
that the clip length is previously known, even if we do not know
exactly the length of the video clip, the extensive experiments
on time clipping and fade-over attacks give enough idea about
the robustness of the scheme against clip length uncertainty. Re-
garding the result of those attacks presented in Sections V-A and
V-B, we can safely detect the desired video if the length is es-
timated with maximum error of 8% of the original length (This
corresponds to a difference of 24 frames within a clip of 300
frames). In fact, the Hamming distance starts dropping gradu-
ally as the window approaches to the correct position, which
suggests that, even if the window length is not exactly the same
as the clip length, the algorithm can still give an indication of
the desired clip. In one case of RBT-based experiments (Fig. 16,
upper right plot) the Hamming distances remained at relatively
lower levels (Hamming distances around 12) in the first part of
the browsed video (frames 0 to 350). This was due to the fact that
the content was quite similar to that of the target video, where
frames 0–650 all covered the talk of a politician.

E. Reverse Play

In this experiment the video is reverse played, that is, the
frame indices are reversed. As expected, the even temporal fre-
quencies (Planes 2 and 4 in the DCT cube in Fig. 4) are
insensitive to the time reversal while the odd frequency terms
(Planes 1 and 3) are affected, in that they are themselves re-
versed. Fig. 17 illustrates the case, where the hash bits resulting
from thresholding of 4 4 spatial DCT coefficients per tem-
poral DCT plane are displayed in lexicographic order. In this
figure, the original hash, the hash of the time-reversed video,
and the positions in which the bits differ are shown. In this re-
spect, we can scan the video either way, from head to end or from
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Fig. 16. Broadcast monitoring results.

Fig. 17. Differing bit locations of DCT based hashes of a video and its reversed
played version.

end to head. One use of this property could be the enabling of
double check on a suspected video. In contrast there is no such
symmetric property for RBT transform, so that the video cannot
be browsed bidirectionally.

F. Effect of Video Clip Length

We have up to this point used as the “video quantum” or video
clip sizes extending over 10–15 s or 300–400 frames at 25 fps. It
is intriguing to investigate the identification/verification perfor-
mance when the time extent of the video quantum is altered, say,
down to a few seconds or up to a few minutes. Recall that what-
ever the length of the input video, it is always normalized to a
fixed number of frames (which is 64 frames in our experiments).
Hence, the longer the video, the more will be the temporal com-
pression, hence the risk increases of glossing over some video
details in time, or of not being able to detect content replace-
ment, content deletion, etc., types of malicious attacks.

We ran experiments with different clip lengths in number
of frames (at 25 fps) and subjected them to several signal-pro-
cessing and channel impairment modifications described in
Table I. 25 video sequences having 100, 150, 250, 400, and
700 frames are selected from each 4 genre, that is, overall
100 clips (For each of 4 genre, 5 clips for each of 5 video

length possibilities). The clip lengths in time units varied from
4 s to 28 s. After applying modifications to these clips, the
Hamming distances between the hashes of original sequences
and those of modified sequences are calculated. This exercise
was repeated separately for each of the five chosen clip lengths.
Hamming distances averaged over the 20 clips for each length
are plotted in Fig. 18(a) as a function of clip length. In this
limited experiment, no significant trends were observed.

Although no significant effect of frame length is observed on
the performance of our hash functions under the attacks spec-
ified in Table I, it wouldn’t be a nonsense expectation that the
sensitivity of the hash towards frame substitution attack would
decrease as the clip length was increased. That is because, since
the substituted clip length is kept fixed, the ratio of the sub-
stituted clip length to whole clip length and thus the relative
amount of changed information is decreased as the original clip
length increased. In other words, same amount of substitution
yields to less alteration in the normalized video as the clip length
increases since every video clip is normalized to a fixed number
of frames regardless of its original length. Consequently the
hash of the attacked video clip would be more alike to the orig-
inal hash as the clip length increases. We chose the substitution
length of 1-s as the minimum duration since intuitively scenes
lasting less than 1 second may not be visually impacting. Since
the aim of this experiment is to show the decrease in the sen-
sitivity of the hash to substitution attacks as the video length
is increased, we chose to embed 25-frame substitutions from
different genres at random positions within sequences of in-
creasing length of 100, 150, 250, 400, or 700 frames. Such a
substitution is illustrated in Fig. 10(b). The sensitivity of the
hash function to substitution attack is reduced as video length
increases since the substituted part plays an increasingly minor
role. Fig. 18(b) reveals that substitution attacks, altering up to
8% of the video sequence (1 s substitution in a 14 s clip), can
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Fig. 18. Effect of Clip Duration: (a) The mean of Hamming distances between clipped and original video sequences for different video lengths for RBT-based
hash. DCT-based hash performs almost exactly the same. (b) The mean of hamming distance between the hashes of video clips subjected to substitution attack
and the original video clips. The distance gets closer as the video length increases.

Fig. 19. Mean intra Hamming distances for attacks gauged at equal perceptual
quality SSIM.

be caught. For longer sequences, short substitutions can be de-
tected by analyzing the sequence as a concatenation of shorter
video subsequences.

G. Iso-Distortion Performance

In Sections V-A and V-B, the performance of the algorithms
was observed under “stress testing” with most severe level of
modifications (Section IV-C), where the video quality was often
reduced to a low and commercially unacceptable level. The pur-
pose here was to show under what severity of modifications the
hash function could still perform reasonably well. As an alterna-
tive testing scheme, we investigated the performance of the hash
functions at a fixed modification severity. The modification level

was quantified in terms of the quality metric SSIM: Structural
Similarity Index. We fixed the SSIM at 0.7, and measured also
the Hamming distance between the original and attacked video
hashes. We repeated this experiment over 80 video sequences
from four genre (20 for each genre). The resulting Hamming
distances are averaged for each modification and presented in
Fig. 19. Although, all modified video sequences are equally dis-
torted in terms of SSIM, we observed that the both RBT and
DCT based hashes have their worst performance against the
modifications where pixel saturation to 255 and/or clipping to
0 occurs. The brightness increase and decrease make lighter re-
gions of the frames totally white (saturation) and darker regions
totally black (clipping to 0), respectively. Similarly, the contrast
increase makes both lighter regions totally white and darker re-
gions totally black at the same time. This causes the elimination
of signal dynamic in these regions and errors in resulting hash
values. For the remaining modifications, the signal distortion oc-
curs in higher frequency components and thus has no significant
effect on hash values. In conclusion at SSIM video quality of
0.7, the hashes pass the test under all attack types.

H. Performance Comparison of the Proposed Hash

For a fair assessment, we have chosen to compare our algo-
rithm with that of Oostveen et al. [9], which is based on 2 2
spatio–temporal Haar filters. Other video hash algorithms pro-
posed in the literature compute the hash on a frame-by-frame
basis and then concatenate these hash sequences. These algo-
rithms are very vulnerable to temporal desynchronization mod-
ifications, such as frame dropping, hence would be unfair to put
them in performance comparison with ours.

The compared algorithm divides each frame into nonover-
lapping blocks and computes hash from the difference between
mean values of consecutive blocks both along spatial and tem-
poral axes. Thus each bit of the hash depends on the two neigh-
boring blocks in the current frame as well as the corresponding
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Fig. 20. Comparison of DCT/RBT-based algorithms and the Oostveen’s algo-
rithm [9].

neighbors in the previous frame. Since the hash length is dif-
ferent for each method, we normalized Hamming distance by
dividing it by the length of the hash. For example, when nor-
malized Hamming distance is 0.5, this means that the compared
hashes are maximally different whatever method is used.

Since the hash length of Oostveen’s method depends on
number of frames we could only include those modifications
where the video length remains constant. This leaves us with
the following modifications: AWGN, blurring, contrast in-
crease and decrease, brightness increase and decrease, MPEG4
compression, frame dropping followed by interpolation, spatial
rotation and spatial shifting. The parameters of the first seven
modifications are chosen the same as in Table I. Frame dropping
is run at 70% loss, the spatial rotation and shifting, are realized
with parameters 3 and 4%, respectively.

It is observed in Fig. 20 that our methods perform uniformly
equal or better than Oostveen’s method for intra-hash statis-
tics. Since Oostveen’s method uses more limited spatio–tem-
poral information (only two consecutive frames are considered),
under frame dropping it performs significantly worse than our
method, which embraces the entire video sequence. The com-
pared method has poorer performance under the modifications
that lead to saturation to 0 or 255 gray values, as for example, in
brightness manipulation case or high AWGN case. As for inter-
hash statistics Oostveen’s method performs as well as ours.

I. Analysis of Forgery

It was remarked earlier that robust hashing and content-based
retrieval differ in that, unlike a content-based retrieval system, a
robust hash function should generate unique hash values when-
ever the content is perceived as different, despite the remnant
commonality of the original and the doctored versions. Thus the
perceptual hashing algorithms must walk the thin line between
efficient retrieval and authentication of the genuineness of the
content. In this context, the robust hashing must meet the chal-
lenge of authenticating forged video documents.

Fig. 21. Foreman is forged into background of Akiyo.

Fig. 22. Hamming distance between the hashes of the original and its region
as a function of forged area percentage.

Doctoring video content and creating forged versions must be
done cleverly and it is a standalone area of expertise. We used,
therefore, a simple method to create forged video clips in order
to test our two algorithms against forgery. We forged Foreman
sequence into the static background of Akiyo sequence, as illus-
trated in Fig. 21, where approximately 5% of the frame area has
been manipulated. We increase the forged area in small steps
in a series of experiments and compute its hash difference from
the original one. The Hamming distances between hash func-
tions of the forged and original are plotted in Fig. 22, where the
abscissa indicates the percentage of the forged area in a frame.
We observe that DCT-based hash is significantly more sensi-
tive to forgery than the RBT-based hash due to its well-ordered
structure and properties described in Section III. However, the
RBT-based hash has also an acceptable operation region when
the iso-distortion results in Section V-G are considered. For ex-
ample when the threshold is set to 5, innocent manipulations
can be discriminated from the content altering forgeries. On the
other hand, if higher sensitivity to forgery attacks is desired, the
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frames can be divided into blocks and each block can be sepa-
rately hashed. This would on the one hand serve to localize the
content manipulation and on the other hand would enable de-
cision fusion schemes. If one of the block hashes differs from
the its counterpart above a threshold, then that subclip would be
declared as forged, and the whole clip might be selected as in-
authentic depending on the application.

VI. CONCLUSION AND FUTURE WORK

We have presented a method for computing a robust hash
from video clips for the purposes of identification and verifica-
tion. The proposed hash function is shown to be remarkably ro-
bust against signal-processing modifications and channel trans-
mission impairments. These modifications may cause severe
perturbations on the video signal, but apparently do not signif-
icantly modify the content information as captured by the hash
algorithm. Recall that some of the modifications described in
Table I are “exaggerated” for stress testing of the algorithm, re-
sulting even in unacceptable viewing quality. On the other hand,
hashes of different video contents yield widely differing hash
sequences. Thus, based on the proven uniqueness (randomness)
and robustness, the proposed hash algorithm can be used in ap-
plications of broadcast monitoring, video database searching,
watermarking for tamper-proofing, etc.

The experiments show that DCT-based hash is slightly better
in identification and verification tests of video clips, as seen in
performance Tables III and IV in that it more robust against
most of the modifications as illustrated in Fig. 12. Moreover,
DCT based hash is much easier to compute since DCT is a well
known transformation and processors are most likely to be opti-
mized for it. So, DCT-based hash would be the better choice in a
non-adversarial scenario, where one does not expect malicious
manipulation of the video material, such as, the own archive
of a video distributor, or identifying video clips within a long
broadcast. On the other hand, the RBT-based hash, which has
proven to be slightly weaker, would be used in an adversarial
scheme, where a malicious party might attempt to modify the
video content without causing changes in the hash value or con-
versely minimally change the content to engender a different
hash. In the first instance the pirate claims a legal hash for an il-
legal content while in the second instance the pirate can exploit
a copyrighted material since the hash does not collide with any
existing one.

The comparison of our RBT- or DCT-hashes with its nearest
competitor, the Haar-based video hashing of Ostveen et al. [9]
shows that our schemes outperform it under several attack sce-
narios. Finally, our experiments on forgery attack indicates that
by judicious setting the authentication threshold, most of the in-
nocent attacks can be authenticated whereas the forgeries are
rejected.

There are several avenues to be explored for future work
First, alternative transform schemes, such as discrete Fourier
transform, discrete wavelet transform or overcomplete basis
sets can be used. Second ancillary information, such as hash
from audio and/or hash from color components can be included.
The audio hash can form useful complementary information in
schemes where video clips are captured with different cameras,
as could occur in security applications. Third, implementation

issues must be addressed for efficiency in broadcast monitoring
or in security cameras. For example, instead of having the 3-D
spatio–temporal video data cube to march in time, one can first
2-D-transform each frame, and then selectively apply the 1-D
transform over temporal axis. Thus as the window slides past,
the 2-D-transforms of the frames can be re-used so long as they
are subtended by the window. Thus, for each hash instance,
only the newly covered frames will have to be 2-D spatially
transformed. Fourth, an intriguing alternative would be to
implement the hash computation in the compressed domain, for
example, between I-frames. Longer video segments, let’s say
a whole movie itself, can be thought of as a concatenation of
video clips, and hence the hash of the whole as a concatenation
of fingerprints. The merging and compression of the concate-
nated hashes via error correcting decoders is an interesting
alternative. Finally, the security issue is not solved thoroughly
as the random frequencies employed in the RBT hash provide
a limited search space and a scheme in the vein of [13] must be
assessed.
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