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(Un)wisdom of Crowds: Accurately Spotting
Malicious IP Clusters Using Not-So-Accurate IP

Blacklists
Baris Coskun

Abstract—Most complex tasks on the Internet—both malicious
and benign—are collectively carried out by clusters of IP ad-
dresses. We demonstrate that it is often possible to discover
such clusters by processing datasets and logs collected at var-
ious vantage points in the network. Obviously, not all clusters
discovered in this way are malicious. Nevertheless, we show that
malicious clusters can accurately be distinguished from benign
ones by simply using an IP blacklist and without requiring any
complex analysis to verify malicious behavior. In this paper,
we first propose a novel clustering framework which can be
applied on datasets of network interactions to identify IP clusters
carrying out a specific task collectively. Then, given such a list of
identified clusters of IP addresses, we present a simple procedure
to spot the malicious ones using an IP blacklist. We show that
by choosing the parameter of the proposed clustering process
optimally using a blacklist, hence making it blacklist-aware,
we significantly improve our overall ability to detect malicious
clusters. Furthermore, we mathematically show that even a
blacklist with poor accuracy can be used to detect malicious
clusters with high precision and recall. Finally, we demonstrate
the efficacy of the proposed scheme using real-world login events
captured at the login servers of a large webmail provider with
hundreds of millions of active users.

I. INTRODUCTION

Many malicious activities on the Internet have evolved into
quite complex operations which are carried out by groups of IP
addresses. Email spam, distributed password guessing attacks
and malware distribution networks are few examples of this
sort. Such collective effort from a group of IP addresses often
leaves quite noticeable traces at various vantage points in the
network. This enables defenders to cluster the IP addresses
of such groups together using simple data analysis techniques.
For example, attackers often use a group of IP addresses to log
into compromised web accounts to carry out various malicious
tasks [1], [2]. Therefore, a clustering analysis of the login
events, based on common accounts accessed from different
IP addresses, allows an online service provider to link these
IP addresses together, since they are used to log in to the same
set of web accounts.

Clearly not all clusters of IP addresses produced by such
data analysis schemes are malicious. For example, the same
clustering analysis of login events mentioned above often
groups together gateway or proxy IP addresses of various kinds
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of networks, such as a mobile network or a corporate network,
since they are used by same sets of users to log into their
accounts. Obviously, such clusters of gateway IP addresses
are not malicious at all. In fact, there are numerous other
legitimate cases that could result in benign IP clusters, such as
content distribution networks, peer-to-peer networks and cloud
computing services. As a result, most IP clusters discovered
via such data analysis techniques are actually benign. To
spot malicious clusters, further analysis to verify malicious
behaviors and traits is required. However, such behavioral
analysis is often quite complex and requires intense domain
knowledge.

In this work we argue that, one can easily spot malicious
clusters in a statistically sound way using an IP blacklist
alone, without requiring any complex behavioral analyses.
Surprisingly, even a mediocre IP blacklist with not-so-great
accuracy can potentially do the trick. The intuition is that,
even if a blacklist frequently makes mistakes on individual IP
addresses, it is highly unlikely that it makes mistakes on all IP
addresses of a given cluster. Therefore, the expected number
of blacklisted IP addresses in a malicious cluster is statistically
distinguishable from that in benign ones.

Based on this intuition, we propose a novel and simple
scheme to identify malicious clusters of IP addresses in a given
dataset of network interactions, such as web account access
logs or network flow records. In summary, we first extract
clusters of IP addresses from the dataset using a blacklist-
aware clustering method, which maximizes the statistical
dependence between resulting malicious clusters and a given
IP blacklist. We achieve this by representing the similarities
between IP addresses in the dataset as an IP-IP graph and
then applying a simple graph clustering scheme where we
optimally pick its parameter using the blacklist. Then, once
we obtain a list of IP clusters, we deem the clusters which
exhibit high dependence on the blacklist to be malicious.
We show mathematically and empirically that incorporating
an IP blacklist into both clustering and identification phases
allows us to detect malicious clusters of IP addresses with high
precision and recall, as long as the clusters are large enough
and the blacklist performs slightly better than random guessing
(i.e. the true positive rate is greater than its false positive rate).
We make the following contributions:

• We propose a novel IP clustering framework for a
given dataset of network interactions, which maximizes
the statistical “dependence” between resulting malicious
clusters and a given IP blacklist.
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Malicious Activity Dataset Observed In Similarity Measure Between IPs
Utilizing compromised web accounts Login Events observed at a web service provider Number of common accounts logged in
Delivering email spam Emails received at an email server Content-based similarity between received emails
Botnet command and control Network flow records captured at edge routers of a network Number of common IPs or domains communicated with (exclud-

ing popular ones such as google, yahoo, etc.)

TABLE I. EXAMPLE CASES OF MALICIOUS IP CLUSTERS ALONG WITH THE DATASET THAT THEY CAN BE OBSERVED IN AND POTENTIAL SIMILARITY
MEASURE THAT CAN BE USED IN CLUSTERING.

• We mathematically show how an IP blacklist, even
a mediocre one, can be used to accurately determine
whether a given cluster of IP addresses is malicious or
not.

• We demonstrate the efficacy of the proposed scheme
using real-world dataset collected at the login servers
of a large webmail provider with hundreds of millions
of active users. We show that the proposed scheme
is able to identify malicious clusters of IP addresses
utilizing compromised user accounts significantly more
accurately than the baseline detection scheme.

The rest of the paper is organized as follows. In Sections II,
we give a few real-world examples of IP clusters and propose
a novel blacklist-aware clustering scheme. In Section III we
present how a blacklist can be utilized to identify malicious
IP clusters. In Section IV, we demonstrate how the proposed
clustering and detecting scheme works in practice using real-
world datasets. In Section V we discuss limitations of the
proposed scheme. We present related work and conclusions
in Sections VI and VII, respectively.

II. CLUSTERING IP ADDRESSES

Complex malicious activities on the Internet are carried out
by groups of IP addresses due to several reasons. For example,
the scale of most malicious activities, such as spamming or
denial of service attacks, can be greatly improved by splitting
the load over many hosts. Or adding redundancy to various
components of a malicious activity (i.e. botnet command-and-
control servers) can prevent single point of failures. Perhaps
more importantly, utilizing many different hosts as the attack
source, a malicious activity has a better chance of evading
detection. Groups of IP addresses utilized by a malicious
activity may belong to compromised hosts (i.e. botnets) or
dedicated malicious servers [3]. They are often from all around
the world. Nevertheless, they usually exhibit common traits
specific to the group they are in, since they collectively carry
out a common task. Such similarities allow organizations at
the receiving end of a malicious activity to cluster these
IP addresses together. In this section, we first present three
example cases, which are also summarized in Table I, to
discuss how IP addresses utilized by a malicious activity leave
traces at various vantage points in the network and hence can
be clustered together. After that, we present a novel clustering
scheme which can be used under various scenarios.

A. IP Clusters in the Wild
1) Utilizing Malicious Web Accounts: Many web services,

such as online social networks and web email providers, are

plagued by malicious accounts, which are often used to send
spam emails, post spam comments on blogs/forums, post fake
product reviews, distribute political views, etc. [1], [2], [4],
[5], [6]. These accounts can initially be legitimate accounts
that are later taken over by attackers, or can be accounts
specifically created by attackers for malicious purposes (i.e.
sybil accounts). Regardless of their origins, attackers often
rely on limited a pool of compromised hosts to login these
accounts to carry out malicious acts [7]. This leads to multiple
compromised hosts accessing same sets of accounts within a
certain time window [1], [2]. Therefore, the IP addresses of
such compromised hosts often manifest themselves as tightly
connected clusters when a web service provider performs a
clustering analysis on its access logs by linking together IP
addresses which log in same sets of users.

2) Email Spam Campaigns: In a typical email spam cam-
paign, spammers attempt to send vast number of email mes-
sages to vast number of recipients. To accomplish this, they
often utilize several compromised hosts as SMTP (Simple Mail
Transfer Protocol) servers. By originating spam from many
different SMTP servers, spammers can scale up the number of
mails that they send. In addition, incorporating many different
sources in a spam campaign also helps spammers evade
detection [8].

A group of IP addresses serving for a specific spam cam-
paign often send emails which tend look similar to each
other. This can be observed even for template-based spam
campaigns, where each spam email is dynamically generated
and slightly different than others, since spam templates usu-
ally have invariant and limited-varying portions in order to
generate semantically sensible content [9][10]. As a result,
by measuring the similarity between email contents sent by
different IP addresses, email service providers targeted by a
spam campaign can cluster together the IP addresses utilized
by the campaign.

3) Botnet Command-and-Control Traffic: Substantial
amount of malicious activities on the Internet, such as spam,
denial of service attacks, brute force attacks, etc., are carried
out by networks of compromised hosts called botnets. To
successfully accomplish these attacks, members of a botnet
(i.e. bots) coordinate with each other by regularly receiving
command and control messages from their botmasters. There
are mainly two architectures (i.e. centralized and peer-to-peer)
adopted by botmasters to efficiently distribute these messages
among bots [11]. In a centralized botnet, member bots reach
out a central resource, such as a specific IRC channel or
an IP address or a domain name, etc., to receive command
and control messages. In a peer-to-peer botnet, on the other
hand, member bots form a peer-to-peer overlay network to



3

distribute command and control messages among themselves.
From the perspective of edge routers monitoring the traffic

of a large network which unwittingly harbors many bots (i.e. a
large organization or an Internet Service Provider), clustering
the bots of a centralized botnet together is relatively straightfor-
ward. Basically, all IP addresses communicating with a specific
central resource can be put in a same cluster [12]. This task
becomes slightly harder for peer-to-peer botnets since there
is no central resource. However, it is still possible to link to-
gether the members of a peer-to-peer botnet using a similarity
measure defined as the number of common domain names (or
IP addresses) that the two IP addresses have accessed within a
specific time window—excluding popular domain names such
as “google.com” or “yahoo.com” which are accessed by almost
all IP addresses [13] [14] [15].

B. Blacklist-Aware Clustering
Above examples present various scenarios where IP ad-

dresses, which collectively carry out a common task, can be
linked together by simple data analysis methods. Although the
specifics varies significantly, the common underlying structure
in all those examples is that, one can define a similarity mea-
sure between IP addresses to identify clusters. For example,
in the case of malicious web accounts, the similarity measure
can be defined as the number of common accounts that the two
IP addresses have been used to log in within a specific time
window [1]. Other example similarity measures are presented
in Table I.

Once such an appropriate similarity measure is defined be-
tween pair of IP addresses, a given dataset can be represented
as an undirected graph, where vertices represent IP addresses
and the edge-weight between two vertices represents the sim-
ilarity measure value between corresponding IP address.

We expect to see two kinds of edges on such a graph.
First we expect to see edges which exist due to collective and
coordinated behavior of clusters of IP addresses. We expect
these edges, what we call cluster edges, to tightly connect
the IP addresses of a clusters to each other on the graph.
Second, we also expect to see considerable number of noise
edges, which exist due to various arbitrary reasons and random
events other than coordinated activities of IP clusters. Such
noise edges, which usually comprise the majority of the edges
on a typical graph in our experiments, may connect isolated
and independent IP addresses to existing clusters or even
connect multiple clusters together on the graph. Nevertheless,
we expect the weights of the cluster edges to be substantially
larger than noise edges, since cluster edges represent genuine
relationships as opposed to arbitrary noise.

After building such a generic graph, extracting clusters of
IP addresses essentially corresponds to distinguishing cluster
edges from noise edges. To address this we propose a very
simple clustering scheme as follows:

i) Remove all “weak edges” from the graph, where a “weak
edge” is defined as an edge whose weight is less than a
threshold.

ii) Output the connected components of the resulting graph
as clusters.

Obviously, the crucial issue here is how to pick a proper
threshold value which yields meaningful clusters. If we pick
a too low threshold, then we would not be able to isolate
malicious clusters and end up with very large clusters possibly
comprising both malicious and benign IP addresses. On the
other hand, if we pick a too high threshold, then we would run
into risk of fragmenting malicious clusters into smaller ones,
thereby making them much harder to detect. To address this,
we propose to utilize a given IP blacklist to find the optimal
threshold value. More specifically, we propose to pick the
threshold value so that the “statistical dependence” between the
blacklist and the malicious clusters produced by the clustering
procedure is maximized. The intuition is that, the stronger the
dependence between a cluster and the blacklist, the stronger the
evidence that the cluster is malicious. Therefore by maximizing
this statistical dependence, we would essentially enable the
proposed clustering scheme to output malicious clusters with
strongest statistical evidence of being indeed malicious. Below,
we first present how to measure this dependence and then
propose a simple procedure to pick the optimal threshold.

1) Measuring Statistical Dependence: Suppose we are given
an IP blacklist ‘B’ and a dataset ‘N ’ from which we extract
clusters of IP addresses. To measure the dependence between
the blacklist ‘B’ and an extracted IP cluster ‘C’ from the
dataset ‘N ’, we first define the following pair of events with
binary outcomes for each IP address in the dataset:

i) cli : ith IP address of dataset N is in cluster C
ii) bli : ith IP address of dataset N is in blacklist B

Clearly, these events are independent if ‘C’ is benign. But
for malicious clusters we expect these events to be mea-
surably dependent. To measure the (in)dependence between
these events, we compute standardized residual, which is
the difference between observed and expected number of co-
occurrences of these events divided by its standard error under
null hypothesis (i.e. when the events are independent) [16].
Standardized residual essentially measures how much more
frequently the IP addresses of cluster C are in blacklist B
with respect to the case where C is benign. Therefore, higher
standardized residual values indicate stronger evidence that the
events are dependent. More specifically, standardized residual
is defined as:

R =
n− µ̂√

µ̂(1− p1)(1− p2)
(1)

where n is the observed number of times these events co-occur,
µ̂ is the expected number of times these events co-occur if they
were independent, and p1 , p2 are the probabilities of event 1
and event 2 respectively.

In our setting, null hypothesis represents cluster C is benign
and the events cli and bli are independent. Therefore, the
expected number of times that an IP address is both in cluster
C and in blacklisted B under null hypothesis can be written
as:

µ̂ = |N | |C|
|N |
|B|
|N |

=
|C|.|B|
|N |

where |N | denotes and the number of IP addresses in the
dataset, |B| denotes the number of blacklisted IP addresses
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in the dataset and |C| denotes the size of cluster C. Also
we can write the probability of an IP address being in C is
p1 = |C|/|N | and similarly, the probability of an IP address
being in blacklist B under null hypothesis is p2 = |B|/|N |.
Plugging these into Equation (1), we can compute the stan-
dardized residual of a cluster C that has n IP addresses in
blacklist B as:

R =
n− |C|.|B||N |√

|C|.|B|
|N | (1− |C||N | )(1−

|B|
|N | )

(2)

2) Finding the Optimal Threshold: Using this measure of
statistical dependence, we now show how we can pick the
optimal threshold for proposed clustering scheme. Ideally, we
would like the clustering scheme to produce malicious IP
clusters which have as high standardized residuals as possible.
This would maximize the evidence that these clusters are
indeed malicious. At the same time, we would not like the
clustering scheme to produce many small and fragmented
clusters since distinguishing between malicious and benign
clusters is much more accurate for larger clusters, as we will
discuss in the next section. These requirements can be satisfied
by simply maximizing the average standardized residual over
all clusters. This objective function can be written as:

O =
1

k

k∑
i=1

Ri (3)

where k is the number of clusters and Ri is the standardized
residual of ith cluster as given in Equation (2). Notice that,
standardized residual is expected to be zero for benign clusters,
since E[n] = µ̂ under null hypothesis in Equation (1). Hence
benign clusters do not contribute to the objective function
at all in expectation sense. Therefore, by maximizing the
average standardized residual, we actually optimize only over
malicious clusters without explicitly identifying them first.
Essentially, by maximizing O, we force malicious clusters to
have as high standardized residuals as possible. At the same
time, by maximizing O, we favor fewer clusters hence less
fragmentation due to k in the denominator.

It may be very hard, to analytically find the optimal thresh-
old which maximizes O, since relationship between threshold
and average standardized residual is far from trivial. While
we could employ various numerical methods, such as gradient
ascend, we decided to find the optimal threshold by exhaustive
search over a range of possible threshold values. We believe
that exhaustive search is the most practical solution in this
case where we only deal with a single variable optimization
problem over a limited range. The exhaustive search is quite

straightforward and can be summarized as follows:
Data: IP-IP Graph (G)
Data: List of candidate threshold values (T )
Result: t̂: Optimal Threshold
t̂← −∞;
Ô ← −∞;
for t ∈ T do

G′ ← remove edges with weight < t from G;
Find connected components of G′;
compute O for connected components;
if O > Ô then
Ô ← O;
t̂← t

end
end
Once we find the optimal threshold for a given dataset using

the above procedure, we apply the proposed clustering scheme
to obtain a list of clusters. As discussed previously, most of
these clusters are not malicious at all. Next, we present how
to identify the malicious ones within a list of IP clusters using
the given IP blacklist.

III. IDENTIFYING MALICIOUS CLUSTERS

A. Not All Clusters Are Malicious
The optimal clustering scheme presented above outputs list

of IP clusters which may or may not be malicious. Actually,
significant number of resulting IP clusters are benign in
general. For instance, consider the example of malicious web
accounts discussed in previous section, where “number of
common users logged in” is used as the similarity measure.
In that case, a web service provider analyzing its access logs
to identify IP clusters would observe that many users within
a private network, such as a corporate network or a mobile
network, access their accounts via gateway IP addresses (i.e.
external facing IP addresses of Network Address Translation
(NAT) devices) of the networks that they are in. Therefore,
after applying the proposed clustering scheme, all gateway
IP addresses of a private network would manifest tightly
connected clusters. Clearly, these are not malicious clusters.
In order to tell apart malicious clusters from benign ones,
some additional information associated with maliciousness
is required. One source of such information is to analyze
behavior of identified clusters to check whether they exhibit
any malicious traits [2]. However, this kind of analysis tend to
be highly complex and domain specific. Instead, here we argue
that IP blacklists are far simpler source of side information
which allow us to accurately spot the malicious clusters.

B. Spotting Malicious Clusters Using a Blacklist
Recall from Section II-B that, given a blacklist B and

a dataset N , the standardized residual (R) of a cluster C
in dataset N indicates the strength of evidence that C is
malicious. Using R, we essentially measure the amount of
statistical dependency between two binary events, namely IP
address being in cluster C and IP address being in blacklist
B. Referring to Equation (1), interpretation of standardized
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Fig. 1. Expected standardized residuals for different Cluster Sizes and
True Positive Rates. The False Positive Rate of the blacklist is set to
10% and there are N = 100, 000 IPs in the entire dataset.
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Fig. 2. Expected standardized residuals for different Cluster Sizes and
False Positive Rates. The True Positive Rate of the blacklist is set to
60% and there are N = 100, 000 IPs in the entire dataset.

residual is quite straightforward. Since R is standardized (i.e.
normalized by standard error), R = r means that the observed
number of co-occurrences of these two events is r standard
deviation away from its expected value under null hypothesis.
Therefore, R > 3 is considered as a very strong evidence
that the two events are correlated, since the probability of
observing this simply by chance under null hypothesis is
less than 0.3% [16]. As a result, to decide whether a given
cluster of IP addresses is malicious or not, we compute the
standardized residual using Equation (2) and declare the cluster
to be malicious if standardized residual is greater than 3. Note
that, we guarantee a low false positive rate with this approach,
since the probability of a benign cluster having standardized
residual greater than 3 is less than %0.3. This probability can
be further reduced by setting a higher threshold, however,
doing so naturally leads to fewer malicious clusters being
detected.

C. Effect of Blacklist Quality

This simple procedure allows us to identify malicious clus-
ters among all clusters produced by the optimal clustering
scheme. To understand how the performance of blacklist
B affects standardized residual and therefore our detection
accuracy, we look at the expected value of the standardized
residual for various blacklist performances. Note that the size
of a cluster also affects detection accuracy and cluster size
partly depends on the threshold used in optimal clustering
scheme. However, recall that the threshold in the clustering
process is automatically chosen to produce clusters with sizes
as close as possible to their true sizes. While there may be
some level of noise in this process, in order to investigate the
effect of blacklist quality alone, in this part we assume that the
optimal clustering scheme perfectly extracts true IP clusters
from the data. To characterize the blacklist quality, we first
define the true positive rate of the blacklist as:

TPR = Pr (IP is in blacklist B | IP is Malicious)

and the false positive rate of the blacklist as:

FPR = Pr (IP is in blacklist B | IP is Benign)

Here we implicitly assume that any arbitrary non-malicious IP
address is equally likely to be a false positive. However, in
practice a previously malicious but later cleaned IP address
may be more likely to be a false positive than others due
to poor blacklist maintenance. But for the sake of simplicity,
we assume false positives are independent and identically
distributed. Similarly, we also assume that true positives are
i.i.d as well.

If cluster C is benign then blacklisted IP addresses in C
are due to false positives and hence the expected value of
standardized residual is E[R] = 0, regardless of TPR and FPR
values. More formally, if C is benign then we have:

E[n] = µ̂ = |C| × FPR

and equivalently: E[n− µ̂] = 0
On the other hand, if cluster C is a malicious one, then the

expected number of blacklisted IP addresses in C will be:

E[n] = |C| × TPR

Since there are far more benign IP addresses than malicious
ones in the dataset, the probability of an IP address in
the dataset N being in blacklist B is roughly equal to the
blacklist’s false positive rate (i.e. p2 = FPR). As a result,
combining these with Equation (2), we can write the expected
value of standardized residual as:

E[R] =
|C|(TPR− FPR)√

(|C|.FPR)(1− |C||N | )(1− FPR)
(4)

Notice that, when the cluster is malicious, the expected
standardized residual increases as the difference between
blacklist’s true positive rate and false positive rate increases.
It also increases with cluster size as well. This allows us to
make two fairly obvious observations:
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(b) Cluster Size = 50
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(c) Cluster Size = 100

Fig. 3. Probability of correctly detecting a malicious cluster for different blacklist true and false positive rates and different cluster sizes. There are N = 100, 000
IPs in the entire dataset. Since we consider a cluster to be malicious when standardized residual is greater than 3, falsely claiming a benign cluster to be malicious
is less than 0.3% in all cases.

i) Malicious clusters can be identified more accurately if we
utilize more accurate blacklist.

ii) Larger clusters can be identified more accurately than
smaller ones.

Interestingly, however, it turns out the blacklist does not
have to be very accurate in order to accurately identify
malicious clusters. To demonstrate this, we plot expected
standardized residual for different cluster sizes and blacklist
true positive rates in Figure 1. We set the blacklist false positive
rate to FPR = 10% and the size of the whole dataset to
|N | = 100, 000. As can be seen in Figure 1, the expected
standardized residual quickly exceeds the critical value 3 even
when blacklist true positive rate is 40%. So, a mediocre
blacklist with 10% false positive rate and 40% true positive rate
can be used to accurately identify most malicious clusters with
size greater than 9. Furthermore, even a very poor performing
blacklist with TPR = 20% and FPR = 10% can be
used to accurately identify malicious clusters so long as their
size greater than 80. Note that the aforementioned blacklist
performances are comparable to many public blacklists which
are widely used in practice [17][18].

On the other hand, to investigate the effect of false positive
rate, we fix blacklist true positive rate to TPR = 60% and plot
expected standardized residual for different false positive rates
and cluster sizes in Figure 2. We observe that for low false
positive rates, such as FPR = 10%, the blacklist can be used
to accurately identify malicious clusters with size as small as 5.
For larger false positive rates, such as FPR = 30%, malicious
cluster size has to be greater than 20 in order to be reliable
identified using the blacklist.

Notice that both Figure 1 and Figure 2 show the expected
value of standardized residual and the arguments above are
made in the expectation sense. The actual probability of
detecting a malicious cluster using a blacklist is indeed equal
to the probability of standardized residual being grater than 3.
Using Equation (1) this probability can be simply written as:

Pr [R > 3] = Pr
[
n > µ̂+ 3.

√
µ̂(1− p1)(1− p2)

]

which, after combining with Equation (4), is equivalent to:

Pr

[
n > |C|.FPR+ 3.

√
(|C|.FPR)(1− |C|

|N |
)(1− FPR)

]
This probability can easily be computed, since n is the
number of blacklisted IP addresses in cluster C and binomially
distributed, such that:

Pr(n) =

(
|C|
n

)
(TPR)n(1− TPR)|C|−n

Using these equations, we plot probability of correctly
detecting a malicious cluster (i.e. Pr[R > 3]) for various
blacklist true and false positive rates and different cluster
sizes in Figure 3. We clearly observe that, better blacklists
yield more accurate results. We also observe that the detection
accuracy improves rapidly with the cluster size. For instance,
a mediocre blacklist with TPR=50% and FPR=10% is able
to identify a malicious cluster of size 20 around 85% of
the time. The same blacklist correctly identifies almost all
of the malicious clusters when the cluster size grows to 50.
Recall that, with standardized residual threshold set to 3, the
probability of falsely claiming a benign cluster to be malicious
is less than 0.3% in all cases.

In conclusion, we show that our simple procedure can accu-
rately spot malicious clusters using even a mediocre blacklist.
In the next section we demonstrate the efficacy of our proposed
techniques using real-world datasets.

IV. EXPERIMENTS

In this section we demonstrate how the proposed technique
can be used to identify malicious clusters of IP addresses
utilizing compromised webmail accounts for various purposes,
such as sending email spam, stealing contact lists, up-voting
spam emails to fool spam filters, register to third party websites
for comment spamming, etc. Our main focus is on IP clusters
that utilize compromised user accounts, and unlike some of
the previous work [1][2], we are not particularly interested
in mass-registered accounts created and controlled entirely by
attackers. While the proposed scheme can potentially iden-
tify clusters of IP addresses utilizing such mass-registered
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Fig. 5. The histogram of standardized residuals (R) for clusters obtained
by optimal clustering on a typical day. Majority of clusters are benign,
with standardized residual less than 3.

accounts, it has been shown that mass-registered accounts tend
to yield much larger clusters exhibiting particular behavioral
patterns, which lead to various detection techniques [1][2].
Such domain specific patterns and techniques are outside the
scope of our experiments presented in this work.

To find malicious IP clusters utilizing compromised ac-
counts, we use the dataset of real-world login events observed
at the login servers of a large webmail service with millions of
active users. We use IP address and the anonymized account id
from each login event observed within a given 24-hour period
to build an IP-IP graph. The reason why we use 1-day of
data to build the graph is to utilize as much data as possible
without introducing too much IP churn (i.e. hosts changing
IP addresses) in the dataset. As explained in Section II-B,
vertices are IP address on this IP-IP graph and an edge weight
represents the number of accounts that are logged in from
both of the corresponding IP addresses. We do not use any
other field of login events dataset in this analysis. Also, for
simplicity, we only consider successful login events coming
via SMTP or IMAP protocols or from desktop browsers. We
expect most malicious activities to originate from these login
sources and hence exclude all other sources, including all kind
of mobile devices. Here we would like to emphasize that the
collected data is stored and utilized in full compliance with
the webmail service provider’s data governance policies.

After constructing the graph, we optimally cluster the IP
addresses using the method proposed in Section II-B. Then
we identify malicious clusters using a third party proprietary
IP-blacklist. As explained in Section III, we use this blacklist
to compute standardized residuals during both clustering and
identifying malicious clusters. To provide realistic results, we
use the blacklist snapshot captured one day before the analysis
date ensuring only past information is used during the analysis.
We do not perform any further post processing to verify
malicious clusters by analyzing their behavior. In fact, one of
the main contributions of this work is to eliminate such costly
post processing analyses which incorporate specific kinds of
domain knowledge, hence limit the scope to certain subset of

malicious activities.
In order for our findings to be useful in practice, the analysis

has to be performed frequently on the data from short periods
of time. The reason is that IP addresses has long been known to
switch frequently between being malicious and non-malicious
due to IP churn, hosts getting cleaned, etc. [19], [20], [21],
and therefore identified malicious clusters of IP addresses may
quickly become inactive or cease to be malicious. For this
purpose, we run our analysis daily on the dataset collected on
each day, as opposed to previous works where analyses are
performed on several months of aggregated data. Once daily
results are produced, they can be utilized in variety of ways
such as blocking identified malicious IPs or using the traffic
from identified IPs as positive labels to train machine learning
classifiers designed to detect various malicious behaviors.
Below we explain each step of the daily process in detail.

A. Building the Graph
For a given day, we first build the IP-IP graph where nodes

are IP addresses and there is an edge between two nodes if
the corresponding IP addresses are used to log in at least one
common account on that day. The actual number of common
accounts logged in is represented by the edge weight. To give
an idea about the scale, the resulting graph on a typical day has
more than 700, 000 nodes and 2 million edges, after removing
isolated nodes (i.e. IP addresses which have no edges).

B. Optimal Clustering
Once the graph is built, we find the optimum threshold value

which we use to extract IP clusters from the graph. To find the
optimum threshold, we compute the objective function given
in Equation (3) for a range of threshold values and pick the
one which maximizes the objective function. After finding the
optimal threshold, we remove all the edges with weight less
than the optimum threshold from the graph. Finally we output
the connected components of the resulting graph as IP clusters.
Note that, we ignore the clusters with size smaller than 5, since
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Fig. 6. Precision and Recall values for various edge weight thresholds on
a typical day. We observe that the optimum threshold, which is marked with
a vertical red line, is a reasonable choice yielding 70% precision and 50%
recall.

standardized residuals cannot be accurately computed for such
small clusters [16]. After removing these small clusters, we
typically end up with few hundred clusters for each day.

Finding the optimal threshold is essentially a grid search as
presented in Section II-B2. Since the grid is 1-dimensional in
our setting, the runtime complexity of optimization procedure
is linear with the length of the grid. But each step of this linear-
time procedure can potentially be computationally heavy since
corresponding connected components need to be extracted and
average standardized residual needs to be computed for each
possible threshold value. On the other hand, this grid search
process is highly parallelizable, since different parts of the
grid can be searched independently in parallel. Therefore the
actual CPU time to find the optimal threshold varies signif-
icantly depending on the available computational resources.
Nonetheless, to give a rough idea, single threaded search for
the optimal threshold within the range of (0,30) on a typical
day’s data takes about 60 seconds, where we use a virtual host
with 2GHz 64-bit QEMU Virtual CPU on a cloud platform and
employ NetworkX Python library [22] to extract connected
components.

To depict this optimization process, we plot the objective
function for a range of threshold values on a typical day in
Figure 4. We clearly see that the optimum threshold on this
particular day is 12, which means that a pair of IP addresses
have to log in more than 12 common accounts in order to be
connected on the graph and hence be on the same cluster.

C. Making the Decision

Recall from Section III that, we deem a cluster to be
malicious if its standardized residual is greater than 3. To see
how malicious the resulting clusters are in a typical day, we
plot the histogram of standardized residuals of the resulting
clusters in Figure 5. We see that majority of clusters are benign,
with standardized residual less than 3. But we also also several
malicious clusters with very high standardized residuals.
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Fig. 7. Optimal thresholds for each day of daily analysis.

D. Ground Truth
To evaluate the detection performance of the proposed

scheme, we need some form of ground truth information. As
acknowledged by previous works, a complete ground truth is
very hard to come by in security applications and our case is
no exception. Nonetheless, at least to give us some insight,
we employ a form of outbound spam email classifier as an
incomplete source of ground truth. The outbound spam clas-
sifier, is a fairly complex system utilizing numerous features
to decide whether an outbound email sent by a user of the
webmail service is spam or not. To build the ground truth for
each day, similar to [1], we label a cluster to be malicious
if more than 10% of its IP addresses send at least one spam
email on that day according to the outbound spam classifier.
Note that the proposed scheme does not use this outbound
spam classifier in any way in its decision process. We merely
use it for evaluation purposes.

Using this ground truth, we can now compute precision and
recall metrics for a given day. Precision indicates what fraction
of the detected clusters is actually malicious. On the other
hand, recall indicates what fraction of all the malicious clusters
in the entire dataset is detected by the proposed scheme.
Notice that, although we would like to see high precision
and recall values in general, we should not expect to achieve
perfect precision with this ground truth. The reason is that,
the proposed scheme is likely to identify additional malicious
clusters which are not used to send spam, hence missed by
ground truth. After all, if our goal was perfect precision, than
we would not need to design any other detection scheme since
the outbound spam filter itself would already be doing the
desired task perfectly. On the other hand, we would ideally
like to see perfect recall, since we would like to be able to
detect all known malicious clusters sending spam. However,
in practice we usually do not observe perfect recall, which
can be attributed to blacklist’s true positive rate being too
low for some of the malicious clusters, which in turn have
small standardized residual values as explained in Section III.
Although we can achieve satisfactory recall performance with
the current blacklist, one way to improve recall is to use a
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Fig. 8. Precision and Recall values for 15 days. The proposed scheme performs consistently better than the baseline both in terms of precision and recall

better blacklist or perhaps multiple blacklists simultaneously.
To closely inspect our detection performance, we plot preci-

sion and recall for different threshold values on a typical day in
Figure 6. Notice that we do not use precision and recall values
when searching for the optimal threshold and therefore we
cannot expect the optimal threshold to yield the best possible
performance in terms of precision and recall. Nevertheless, we
observe that the optimal threshold is indeed quite reasonable.
Although precision would be improved by a slightly higher
threshold, recall would actually start to decline.

E. Running for Several Days
To investigate the performance of the proposed scheme over

a larger time window, we repeat each of the above steps for
several days. Depending on the traffic and the resulting graph,
on each day we end up having a different optimal threshold
ranging from 6 to 13, as shown in Figure 7. After performing
optimal clustering using these thresholds, we declare the clus-
ters whose standardized residual is greater than 3 as malicious
for each day. Recall that, with this threshold, our false positive
rate is less than in 0.3% since the probability of standardized
residual for benign clusters being greater than 3 just by chance
is less than 0.3%.

To serve as baseline, we also try to identify malicious
clusters using suggestions proposed in [1]. In that work,
authors first build a graph from a dataset containing IP
address/account id pairs. Then they extract clusters using
a modularity-based agglomerative graph clustering scheme,
called Louvain Method [23]. Finally, authors observe that most
of the malicious clusters tend to be very large as opposed
to benign clusters. Based on this insight, we apply Louvain
Method to the IP-IP graph we construct each day. We then
declare clusters with size greater than a threshold as malicious.
We call this baseline method Louvain+Size. We empirically
pick this threshold to be 10, which seems to yield the best
performance in terms of precision and recall. Note that, this
is not a direct comparison of the proposed work to the work

presented in [1]. We merely follow the insights presented in [1]
to devise a baseline experiment. In fact, the work presented in
[1] and this work are not compatible and cannot be compared
directly. The major difference is that, in this work we deal with
IP-IP graphs to identify malicious clusters of IP addresses,
whereas in [1] authors work with account-account graph and
their output is malicious clusters of user accounts.

Furthermore, in order to assess the effect of the proposed
blacklist-aware clustering alone, we design another baseline
scheme which we call Louvain+Residual. In this scheme
we first extract IP clusters using Louvain Method and then
deem the resulting clusters with standardized residual greater
than 3 as malicious. Here we use the same blacklist as
the proposed scheme, therefore the only difference between
Louvain+Residual and the proposed scheme is the choice of
clustering method.

After identifying malicious clusters with both the proposed
scheme and the baseline methods, we compute precision and
recall values each day using that day’s ground truth. We
plot the results in Figure 8. We observe that the proposed
scheme performs consistently and significantly better than both
baseline methods in terms of precision and recall. Also the
results suggest that making the clustering blacklist-aware is
crucial in detecting malicious IP clusters since the proposed
scheme significantly outperforms Louvain+Residual method.

When we closely look at the detected clusters, we observe
that the proposed scheme produces much smaller clusters than
Louvain method does. This is somewhat expected since the
proposed scheme ignores weak edges with weight less than the
optimal threshold and only outputs clusters where IP addresses
are strongly connected to each other. In a sense, the proposed
scheme prunes loosely connected branches of IP clusters and
outputs the core structures which are highly correlated with
the blacklist. On the other hand, Louvain method involves
no such pruning thereby producing much larger clusters with
many more IP addresses several of which are rather loosely
connected.
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F. Additional Detections
We observe in Figure 8(a) that, precision of the proposed

scheme is around 75% on average. As mentioned before,
this is expected since the ground truth is not complete. To
understand the nature of these additionally detected clusters,
we manually investigate some of them. We observe some
interesting cases where additional detections are seemingly
malicious in a sense that we did not foresee. For example,
we discover several clusters of IP addresses having large
number of failed login attempts to numerous user accounts.
At first glance, it seems these IP addresses should not form
any clusters, since we only consider successful login events
in our analysis. But upon closer inspection we realize that,
while generating a lot of failed login attempts, many of these
IP addresses managed to successfully log in same subsets of
accounts and hence form clusters on the IP-IP graph. We
believe that these are actually distributed password guessing
attacks, where passwords of some user accounts are correctly
guessed by multiple IP addresses, since they probably use the
same method and dictionary to guess passwords.

We also observe more ambiguous cases as well. For example
we see that some detected clusters are composed of very sim-
ilar IP addresses sharing long prefixes with each other. These
clusters essentially represent IP addresses within subnets. On
one hand, such clusters could be false positives where a single
infected machine in a subnet got assigned several different
IP addresses over time and managed to get most of them
blacklisted. On the other hand, those clusters can indeed be a
set of malicious hosts sitting within a subnet and systematically
utilizing compromised accounts in various ways. While we
cannot immediately confirm maliciousness of those clusters
using the data available to us at the time of the analysis,
depending on the application requirements one can choose to
ignore such detected clusters whose IP addresses seem to be
within the same subnet.

G. Effect of Blacklist Performance
In Section III, we mathematically show that even mediocre

blacklists can be used to accurately detect malicious clusters.
To observe this in practice, we run an experiment where
we gradually degrade the blacklist quality and measure the
detection performance. Note that the original blacklist may
not be very accurate in the first place. Nevertheless, we just
would like to see how the cluster detection performance would
be affected if we used lesser quality blacklists.

To degrade the blacklist quality, we first find all blacklisted
IPs in our dataset for a typical day. Then we remove certain
fraction of these blacklisted IPs from the blacklist and essen-
tially making them “good”. Then, in order to keep the number
of blacklisted IPs constant for consistency, we randomly pick
same number of IPs from the entire dataset and add them
to the blacklist. This way we significantly reduce the true
positive rate of the blacklist. False positive rate, on the other
hand, is not affected much and only increased by few percent
since the number of randomly picked IP addresses is much
smaller than the number of all IP addresses in our dataset.
Since the experiment has a random component, to average out
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Fig. 9. Precision and Recall as the blacklist is gradually corrupted. Precision
stay stable even until 80% of the blacklisted IPs are removed from the
blacklist.

uncontrolled factors we repeat the same experiment 25 times
and report the average. We plot precision and recall values
for different percentages of blacklist corruption in Figure 9.
We observe that, while recall is declining steadily as more
of the blacklist is corrupted, the precision seems to stay
stable around 75 − 80% even until 80% of the blacklisted
IPs are removed from the blacklist. Essentially, as blacklist
gets worse, the proposed scheme misses some of the malicious
clusters but continues to detect several others, which contain
high numbers of blacklisted IPs. In conclusion, although the
proposed scheme might miss some of the malicious clusters
depending on the quality of the blacklist, the ones it detects
are highly likely to be malicious.

V. LIMITATIONS

The efficacy of the proposed scheme depends on two basic
assumptions:

i) IP addresses in a malicious cluster exhibit some form of
similarity to at least few other IPs in the same cluster

ii) At least some of the IP addresses in a malicious cluster
are blacklisted.

Essentially, the detection performance would suffer from
any effort by an attacker to break any of these assumptions.
For example, to break the second assumption, an attacker
might try to employ recently infected hosts whose IP addresses
have not been blacklisted yet. Similarly, to break the first
assumption, an attacker, who utilizes malicious web accounts,
might force the sets of accounts logged in by IP addresses to be
mutually disjoint. While one can design several other strategies
to break these assumptions, implementing such strategies often
increases the cost of the attack or limits its scope. For example,
using only recently infected hosts significantly limits the
number of IP addresses available to an attacker, hence limits
the scale of the attack. Similarly, trying to force IP addresses to
log into disjoint sets of compromised accounts requires more
planning on attacker’s part, thereby increasing the cost of the
attack. Basically attacker needs to design new methods to make
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sure the sets remain disjoint despite the hosts frequently go
offline or change IP addresses.

Another limitation arises from the statistical nature of the
proposed scheme. More specifically, as discussed in Section
III, IP clusters need to be larger than a certain size—depending
on the accuracy of the employed blacklist—in order for us
to make accurate decisions. This essentially implies that the
proposed scheme can only be employed by relatively large
organizations interacting with thousands of IP addresses in a
short time window (i.e. 24 hours). Smaller organizations whose
data can only produce smaller IP clusters need to either utilize
more accurate blacklists or collaborate with other smaller
organizations to produce more accurate results collectively. On
the positive side, such collaborations are not uncommon in the
context of IP blacklisting [24][25].

IP addresses of cloud services, such as Amazon EC2 or
Microsoft Azure, also pose a concern for the proposed scheme.
More specifically, such IP addresses are shared resources and
often utilized by independent users for independent tasks
within a short amount of time. Therefore, they may be
frequently switching back and forth between being part of
malicious clusters and being part of benign clusters. In such
cases, where identities and intentions of IP addresses change
rapidly and continuously, IP clustering process may have hard
time in placing those IP addresses into appropriate clusters,
thereby increasing error rates. One way to address this issue
would be to exclude IP addresses of known cloud service
providers from the analysis and handle them separately.

VI. RELATED WORK

Several works make the observation that group of IP ad-
dresses carrying out a certain task behave similarly. In [7],[1]
and [2] authors present that compromised web accounts are
utilized by similar sets of IP addresses. In [26] authors show
that spamming IP addresses tend to send emails to similar
sets of domains. Various detection methods based on similar
network behavior that these groups of IP addresses exhibit are
explored in several works. In [15] Nagaraja et. al. show that
members of a peer-to-peer botnet communicate heavily with
each other as part of their command and control activities and
therefore form a tightly connected cluster on the who-talks-
to-whom graph built from the network flow records captured
at the routers of an Internet Service Provider (ISP). In [13]
authors show that member of a peer-to-peer botnet within an
enterprise network tend to communicate with similar sets of
external IP addresses and therefore are likely to be connected
each other on a mutual contacts graph, where vertices represent
internal IP addresses and edges represent two vertices have
communicated with at least one common external IP address.
In [27] Gu et. al. show that botnet members in an enterprise
network exhibit similar network behavior and therefore can be
detected by applying a clustering scheme on various network
level features. However, most of these works require network
level data observed between IP addresses captured at ISP
or enterprise level routers and therefore cannot be extended
to datasets observed by web application service providers.
The detection scheme presented in [2] is designed for web

application service providers, however, it focuses on detecting
groups of user accounts rather than groups of IP addresses.
Furthermore, it requires costly behavioral analysis in order to
identify malicious clusters. In the proposed work, we identify
malicious clusters of IP addresses by simply using blacklists
and without requiring any costly behavioral analysis. Similarly
in [1] Stringhini et. al. present another scheme for web
application service providers, where they aggregate months of
data in order to reliably identify malicious clusters of user
accounts. However, as mentioned before, our focus in the
proposed work is on IP addresses rather than user accounts
and therefore we are restricted to process data aggregated for
much shorter time windows (i.e. 1 day), since hosts frequently
change IP addresses due to dynamic IP allocations (i.e. IP
churn). Despite this restriction, we are still able to present
high detection accuracy in the proposed work.

The proposed work heavily relies on IP blacklists. Effec-
tiveness of some well-known IP blacklists has been explored
in various studies. In [17], authors show that IP blacklists
suffer from “non-trivial” false positives and false negatives.
There have been several works to improve this shortcoming.
In [28] authors study potential reasons for poor performance
of IP blacklists, such as targeted and low volume attacks
and reactive nature of blacklists. To mitigate these issues,
authors then propose dynamic thresholding and speculative
aggregation strategies. In [29], authors propose personalized
blacklisting strategy based on the observation that common
attack sources are reported by same set of victims presented in
[30]. Although these works mostly verify that blacklists are not
perfect and often plagued by significant accuracy issues, in this
work we show that even a mediocre blacklist is sufficient in
order for the proposed scheme to accurately identify malicious
groups of IP addresses.

Besides this work, there are few other studies where clusters
of IP addresses are judged by using blacklists. In [14], authors
cluster peer-to-peer communities together from network com-
munication patterns and identify potentially malicious clusters
using a blacklist. Authors apply a similar strategy to mobile
networks in [31] and reveal several scam activities. In [32]
and [28] IP addresses are clustered based on their proximity
on the IPv4 address space and potential malicious groups are
identified using blacklists. However, these methods are rather
ad-hoc and does not provide any principled insight into the
usage of blacklists. Furthermore, they use blacklists only after
clustering is completed. In this work, we present a scheme
which incorporate a blacklist into clustering scheme itself in
order to produce optimal clusters with high statistical depen-
dency to the blacklist. We also provide a sound mathematical
analysis to understand how useful a blacklist of a certain
accuracy would be in detecting clusters of various sizes.

VII. CONCLUSION

In this paper we have presented a novel scheme where
we utilize mediocre blacklists to make accurate decisions
on clusters of IP addresses. Basically, we argued that many
complex activities on the Internet are carried out by clusters
of IP addresses, which leave quite noticeable traces at various
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vantage points. We discussed that simple data processing re-
veals such clusters of IP addresses. To that end, we proposed an
optimal clustering scheme which yields malicious IP clusters
which are highly correlated with a given blacklist. Then we
argued that, once a cluster of IP addresses is identified, it is
surprisingly easy to determine whether it is malicious or not
using a blacklist. In addition, we mathematically showed that
even a very poor blacklist can yield quite accurate results, so
long as it performs better than random guessing. The basic
idea is that, as long as a blacklist’s true positive rate is greater
than its false positive rate, the expected number of blacklisted
IPs in a bad cluster is distinguishably larger than that in a
good cluster. We demonstrated the efficacy of the proposed
technique using real-world dataset of login events observed at
the login servers of a large webmail service with hundreds of
millions of active users. Our results show that the proposed
scheme consistently outperforms the baseline schemes during
several days of experimentation. Finally, we also showed that
the proposed scheme identifies additional malicious activities
which we did not foresee at the beginning.
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